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Abstract. Jamming is one of the most severe attacks in wireless sensor networks (WSNs). While existing countermeasures
mainly focus on designing new communication mechanisms to survive under jamming, a proactive solution is to first localize the
jammer(s) and then take necessary actions. Unlike the existing work that focuses on localizing a single jammer in WSNs, this
work solves a multi-jammer localization problem, where multiple jammers launch collaborative attacks. We develop two multi-
jammer localization algorithms: a multi-cluster localization (M-cluster) algorithm and an X-rayed jammed-area localization (X-
ray) algorithm. Our extensive simulation results demonstrate that with one run of the algorithms, both M-cluster and X-ray are
efficient in localizing multiple jammers in a wireless sensor network with small errors.
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1. Introduction

As sensor nodes with networking capabilities be-
come commercially available in recent years, wireless
sensor networks (WSNs) have been increasingly used
in industrial and civilian applications as well as in
military applications; e.g., industrial process monitor-
ing and control, environment and habitat monitoring,
traffic control, and battlefield surveillance [13]. When
sensor networks are deployed in unattended or adver-
sarial environments, security becomes a major con-
cern [2]. Jamming, which is one of the most serious
security threats in the field of WSNs, occurs when an
adversary simply disregards the medium access con-
trol (MAC) protocol by continually transmitting on a
wireless channel. The jamming is assumed to originate
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from sources embedded within the WSN or from com-
promised sensors. Jamming can easily prevent normal
devices from communicating with legitimate MAC op-
erations, introduce packet collisions that force repeated
backoffs, or even jam transmissions [34]. However, it is
challenging to defend against jamming, because WSNs
suffer from many constraints, including low compu-
tation capability, and limited memory and energy re-
sources.

To protect the communication in WSNs, many al-
gorithms have been proposed to detect and defend
against jamming, such as detection by jamming mea-
surements [34], jamming evasion by channel surf-
ing [35], and spread spectrum [28]. Most of these al-
gorithms only detect jamming or try to keep the wire-
less sensor network working under jamming. Among
the countermeasures against jamming, determining a
jammer’s location within a wireless sensor network is
critical to launching certain security actions against the
adversary; e.g., deactivating the jamming device, iso-
lating the jammer, or even destroying it. Only a few
works have attempted to identify the physical locations
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of jammers in a wireless sensor network, and most of
them [18,22,29] only focus on the scenario of a single
jammer.

A more severe jamming often involves more than
one jammer. Multiple adversaries may attack the net-
work at the same time, or even one adversary may
use multiple wireless devices to achieve a better jam-
ming effect. This multi-jammer scenario would make
the existing jammer localization algorithms inapplica-
ble [18,22,29]. More specifically, we define the multi-
jammer scenario as collaborative jamming by multiple
jammers whose jamming regions overlap. All the indi-
vidually jammed areas are then merged and can be re-
garded as a single jammed area. Any separate jammed
area would only be considered as the single-jammer
scenario. This multi-jammer scenario raises new chal-
lenges to jammer localization, as multiple jammers
need to be localized in a more complex setting.

In this work, we develop two algorithms to deal with
the multi-jammer localization problem in WSNs: a
multi-cluster localization (M-cluster) algorithm and an
x-rayed jammed-area localization (X-ray) algorithm.
The M-cluster algorithm is based on the grouping of
jammed nodes with a clustering algorithm, and each
jammed-node group is used to estimate one jammer lo-
cation. The X-ray algorithm relies on the skeletoniza-
tion of a jammed area, and uses the bifurcation points
on the skeleton to localize jammers. We made a com-
prehensive study of our algorithms under various con-
ditions determined by node density, jammer transmis-
sion power, jammer deployment, and number of jam-
mers. Our simulation results show that M-cluster and
X-ray can achieve a mean localization error of 6.5 me-
ters and 5 meters, respectively, in the two-jammer sce-
nario. Compared with the mean error of 38.5 meters
in a baseline scheme, M-cluster and X-ray improve the
localization accuracy by 80% and 86%, respectively.

The rest of the paper is organized as follows. We
review related work in Section 2, and introduce our
multi-jammer scenario with network and jammer mod-
els in Section 3. Then we describe our algorithms in
Section 4, and show the simulation results in Section 5.
In Section 6, we give further discussions and talk about
future work. We conclude our paper in Section 7.

2. Related work

2.1. Jamming detection

Jamming detection gives one the knowledge of the
presence of jammers in a wireless network. The exist-

ing jamming detection methods enhance network pro-
tection by triggering countermeasures and providing
relevant information. In [34], Xu et al. studied four dif-
ferent jamming models based on jamming behaviors
(constant, deceptive, random, or reactive), and exam-
ined different measurements on detecting jamming, in-
cluding packet send ratio (PSR), packet delivery ra-
tio (PDR), signal strength, and carrier sensing time.
Cakiroglu et al. [3] proposed two algorithms for de-
tecting a jamming, which are based on bad packet ra-
tio (BPR), packet delivery ratio (PDR), energy con-
sumption amount (ECA), and neighboring node condi-
tions. Li et al. [14] proposed a sequential jamming de-
tection technique that works when an increased num-
ber of message collisions are observed during an obser-
vation window, compared with the previously learned
long-term average. Misra et al. [20] selected packets
dropped per terminal (PDPT) and signal-to-noise ra-
tio (SNR) as the input to their fuzzy inference system.
Based on the Mamdani model, the system outputs the
jamming index (JI) of each node. Strasser et al. [25]
suggested a method for detecting a reactive jammer
through received signal strength (RSS) and bit error
rate (BER) sampling.

2.2. Countermeasures against jamming

Spread-spectrum (SS) physical-layer techniques us-
ing direct-sequence or frequency-hopping spread spec-
trum [28] are well-known countermeasures against
communication jamming. These solutions require that
both the sender and the receiver share the same key and
the same pseudorandom function to generate a hopping
or spreading sequence. UFHSS [26] and UDSSS [26]
deal with the problem of key establishment without
pre-shared secret under jamming. Jamming and (unin-
tentional) interference are further thwarted by the ap-
plication of forward error-correcting codes and special
coding methods [28].

For WSNs, Wood et al. [32] proposed DEEJAM, a
new MAC-layer protocol for defending against stealthy
jammers using IEEE 802.15.4-based hardware. Xu et
al. [35] presented two techniques, called channel surf-
ing and spatial retreats. The main idea is to increase the
resistance to jamming by avoiding the interference as
much as possible in either the transmission frequency
domain or the spatial domain.

Chiang and Hu [7] introduced a technique to miti-
gate jamming for broadcast applications by adopting
a binary key tree to control code sequences in direct-
sequence spread spectrum. Dong and Liu [9] intro-
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duced a jamming-resistant broadcast system that orga-
nizes receivers into multiple channel-sharing broadcast
groups and isolates malicious receivers using adaptive
re-grouping. Jiang et al. [12] proposed a compromise-
resilient anti-jamming scheme called split-pairing to
deal with insider jamming in a one-hop network set-
ting. Liu and Ning [17] proposed an encoding method
called BitTrickle to defend against broadband and
high-power reactive jamming. Tague et al. [27] pro-
posed a framework for control-channel access schemes
using the random assignment of cryptographic keys
to hide the location of control channels in the pres-
ence of insider jammers. Wang et al. [30] proposed
a delay-bounded adaptive online UFH algorithm for
anti-jamming wireless communication.

2.3. Localization against jamming devices

A few jammer-localization algorithms have been
proposed for WSNs. Pelechrinis et al. [22], based on
packet delivery ratio (PDR) and gradient descent meth-
ods, designed and implemented a lightweight jammer
localization algorithm. Their approach can find out the
nearest node to the jammed area. Liu et al. devel-
oped a jammer localization algorithm called Virtual
Force Iterative Localization (VFIL) [16] and another
algorithm [18] that exploits nodes’ hearing ranges.
Torrieri proposed a direction-finding and localization
method based on the special characteristics of spread-
spectrum communications and multiple antennae [29].
Cheng [6] proposed a new jammer localization al-
gorithm, called Double Circle Localization (DCL).
DCL uses two classic concepts in geometry, minimum
bounding circle (MBC) and maximum inscribed circle
(MIC), to solve the jammer localization problem. All
these works focused on jammer localization in the con-
text of a single jammer, and did not study the multi-
jammer scenario in WSNs.

Recently, Liu et al. [15] tried to address the case
of two jammers coexisting in wireless networks by
leveraging the network topology changes caused by
jamming. They studied the jamming effects under two
jammers and developed an approach to localize jam-
mers under comprehensive simulations. However, their
work does not have details about how to address the
scenario with more than two jammers.

In our recent work [5], we also made a prelimi-
nary study of this multi-jammer localization problem
by proposing the X-ray method. In this work, we sig-
nificantly extended our previous work in the follow-
ing ways. First, we introduce a new technique called

M-clustering for multi-jammer localization. A com-
parative study has been made for M-clustering, X-ray
and a baseline scheme (as shown in Section 5). Pros
and Cons of M-clustering and X-ray are also discussed
(in Section 6). Second, we propose a method for jam-
mer number estimation without the knowledge of jam-
mer transmission range (in Section 3.3). Further, we
show through simulation that our algorithms can toler-
ate well the errors caused by false estimation of jam-
mer number.

3. The case of multiple jammers in wireless sensor
setworks

3.1. Effects of multiple jammers

Jamming is defined as the act of intentionally di-
recting electromagnetic energy towards a communi-
cation system to disrupt or prevent signal transmis-
sion [21]. Wireless devices can successfully receive
information based on the signal-to-noise ratio (SNR)
(SNR = Psignal/Pnoise), where P is the average power.
Noise represents the undesirable electromagnetic spec-
trum collected by antennas including the electromag-
netic energy from jamming. If the SNR of a received
message is below a minimum SNR threshold, the mes-
sage cannot be correctly extracted and decoded from
radio signals. Accordingly, the receiver is considered
to be jammed.

The multi-jammer scenario can be described as fol-
lows. Multiple jammers perform collaborative jam-
ming in WSNs, and they have overlapping jammed
areas. We do not consider the scenarios of a sin-
gle jammer or multiple jammers with non-overlapping
jammed areas. Indeed, these latter two scenarios can
be simply solved by an existing single-jammer local-
ization algorithm [16,18].

Compared with a single-jammer strategy, a multi-
jammer strategy has several advantages to an adver-
sary. First and the foremost, under the same overall
budget of power, the multi-jammer strategy is more
power-efficient than the single-jammer strategy be-
cause of the rapid attenuation of jamming signals. In
Fig. 1, we compare the size of jammed areas in four
strategies under the same overall power: one, two,
three and five jammers. For simplicity, the jammed
area in a multi-jammer strategy is the sum of jammed
areas caused by all the jammers. As the overall power
is fixed, if more jammers are used, each jammer will be
assigned less power (1/n of the overall power, where
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Fig. 1. Jammed area comparison of the single-jammer and multi-
jammer strategies. X axis represents the overall jamming power
used by the jammer strategies. Jammers in one strategy share out the
overall jamming power.

Fig. 2. An illustration of three jammers with overlapping jamming
region in the wireless sensor network.

n is the number of jammers). Figure 1 shows that, un-
der the same overall power budget, more jammers re-
sult in a larger jammed area (i.e., a better jamming
effect). However, from the perspective of a defender,
more jammers mean more jamming-attack strategies,
and hence more challenges to protect communication
and to localize jammers.

We further show a possible topology in a multi-
jammer scenario. In Fig. 2, according to their connec-
tivity, sensor nodes in the network are divided into
three categories: (a) jammed node, which has no com-
munication with its neighbor nodes; (b) unaffected
node, whose connectivity has not been affected by
jamming; (c) boundary node, whose neighbor nodes

Fig. 3. An overview of the network entities and their roles in our
algorithms.

are partially jammed. These nodes are represented in
black, white and grey dots, respectively. We note that,
in the region where two jammed areas meet, the elec-
tromagnetic environment is very complex. In our work,
we use the sum of received signal strength of all jam-
ming signals as the jamming power at each node.
Therefore, as the powers of the different jamming sig-
nals accumulate, some nodes near to the intersection
areas of jammed regions also become jammed.

3.2. Network and multi-jammer models with
assumptions

Network model. In this paper, we first assume that
WSNs are randomly deployed and static, and a base
station is deployed to gather information and runs our
multi-jammer localization algorithms. Nodes are as-
sumed to know their own locations and can detect jam-
ming. Some existing techniques might be used to pro-
vide such information [19,34]. Also, every node main-
tains a neighbor list and has such information as their
locations and activeness (jammed or not). By period-
ically broadcasting a beacon message, this list can be
easily obtained, and any change of the status of neigh-
bors will be updated. In Fig. 3, we show the different
types of entities and their roles in the network at the
time of jamming.

Radio propagation channel model. In our work, we use
the radio propagation channel model in which the ratio
of received to transmitted power in dB is given by

Pr

Pt
dB = 10 log10K − 10γ log10

d

d0
− ψdB, (1)

where ψdB is a zero-mean Gaussian-distributed ran-
dom variable that models the shadowing, K is a unit-
less constant that depends on the antenna characteris-
tics and the average channel attenuation, d0 is a refer-
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ence distance for the far-field antenna, γ is the power-
law attenuation or path-loss exponent, and fading is ne-
glected [10,28]. In the simulations, the shadowing is
neglected by setting ψdB = 0 dB, but both shadow-
ing and fading will be considered in future work. The
power-law attenuation is γ = 3.71, and K = 31.54.
The radio transmission is assumed to be omnidirec-
tional.

Multi-jammer model. Multiple jammers work together
and transmit either the same or different jamming
power levels. All jammers are deployed with their loca-
tions fixed. To model the deployment of multiple jam-
mers in WSNs, we impose a constraint from the ad-
versary’s viewpoint. Assume there are n jammers in
a wireless sensor network, the distance Dij between
jammer i and its nearest-neighbor jammer j should fol-
low this condition:

Dij ∈ [ω(Ri +Rj), (Ri +Rj)], (2)

where Ri and Rj are the transmission ranges of jam-
mer i and jammer j, respectively. ω ∈ (0, 1) is a vari-
able. In general, a smaller ω implies closer distance be-
tween two nodes. Unless specified, ω is set to 0.5 in
this work, and we will study how this parameter affects
performance in our simulation section. Under this con-
dition, jamming regions are merged, and the jamming
impact is optimized. Note that although multiple jam-
mers can be deployed very closely to one another (i.e.,
with a small ω), such deployments would waste the po-
tential ability to jam more nodes. Moreover, when de-
ploying multiple jammers very closely, localizing one
of them would be more likely to expose the other ones
that are close. Indeed, the jammers that are overly close
can be treated as a single jammer. Jammers without
overlapping jammed areas (i.e.,ω = 1) will be not con-
sidered in this paper, as each of them can be localized
individually as a single jammer [16,18].

3.3. Jammer number determination

In this paper, we will mainly focus on determining
the locations of multiple jammers at one time with the
number of jammers already known. How to accurately
detect the number of jammers in WSNs in our multi-
jammer scenario could be an interesting but undecid-
able problem as jammers can vary their transmission
powers. As such, we address this problem with heuris-
tic approaches under different knowledge assumptions.
We will also show the impact of false number estima-
tions in the simulation section.

Fig. 4. Determining the parameter λ which is to be used in estimating
the number of jammers.

The scenario with the jammer-transmission-range
knowledge. Under the approximate propagation model,
the jammed area of each individual jammer is circu-
lar. We first roughly estimate the average jammed area
of one jammer, then use it to estimate the number of
jammers existing in the actual jammed area. In Fig. 4,
R is the average transmission range of a jammer, and
2tR is the average distance between two jammers. The
average jamming area of a single jammer without con-
sidering overlapping is SSingleJammer = πR2. The av-
erage jamming area of one jammer considering over-
lapping is Savg = λSSingleJammer, which is calculated as
SSingleJammer minus the area of the shadowed zone in the
figure. Hence, we can derive λ = (1− arccos(t)/π +

t
√
1− t2/π). By correlating t with the concept of ω in

Eq. (2), we can express it as t = (1 + ω)/2. Using the
parameter λ, a rough estimate of the jammer number is

Njammer =

⌈
SJammedArea

λSSingleJammer

⌉
(3)

where �x� denotes the smallest integer greater than or
equal to x. After the number of jammers in the network
is estimated, we run our multi-jammer localization al-
gorithms.

The scenario without the jammer-transmission-range
knowledge. First, if multiple jammers sequentially turn
on to launch jamming [15], the position of the first jam-
mer could be estimated by a single-jammer localiza-
tion algorithm, and the jammer’s transmission range
could be obtained. Second, if jammers simultaneously
turn on, based on the shape of the jammed area, we
can analyze the width of multiple parts of the jammed
area and estimate the extent of jammer’s transmission
range. Because of the rapid attenuation of radio sig-
nals, the range of significant jamming power should
have an upper limit, RJmax, (indeed, this is why we



24 T. Cheng et al. / M-cluster and X-ray: Two methods for multi-jammer localization in wireless sensor networks

Fig. 5. Jammer-number determination in different multi-jammer scenarios. Here dots (EJN) are the estimated jammer numbers based on Formula
(3). Circles (SSR) stand for the part of formula inside the ceilings.

have multiple jammers) as well as a lower limit, RJmin.
To jam the regular wireless communication between
two good nodes, the lower limit of jammers’ trans-
mission range generally should be larger than good
node’s transmission range, Rnode. Here we set RJmin �
1.5Rnode. Then we can estimate the jammer number as
follows:

Njammer ∈
[
SJammedArea

πR2
Jmax

,
SJammedArea

λπR2
Jmin

]
. (4)

Figure 5 shows our simulation results about our
jammer-number detection method. The x axis repre-
sents the number of simulations in different jammer
number scenarios, while the y axis is the number of
jammers. Here ω = 0.5. In Fig. 5, dots represent the
estimated jammer numbers based on Eq. (3). Circles
(SSR) stand for the part of Eq. (3) inside the ceilings.
Altogether, four multi-jammer scenarios are simulated
(i.e., 2, 3, 4 and 5 jammers), where each scenario shows
50 simulation results. From the simulation results, we
observe that our method works correctly in both the
2- and 3-jammer scenarios. It has only 3 false detec-
tions among all 50 simulations in the 4-jammer sce-
nario, where the estimated numbers become 3 instead
of 4. There are also 3 false detections in the 5-jammer
scenario, where two numbers become 6 instead of 5.
We observe that circles spread out when jammer num-
ber increases. This is because the jammed areas are
overlapped in more complex ways when jammer num-
ber increases, making our previous way of estimating
λ less accurate. As it is very difficult, if not impossible,
to estimate the jamming number perfectly under vari-
ous jamming strategies, we will instead show the im-
pact of false number detection on the performance of
our jammer localization algorithms in Section 5.

4. Two multi-jammer localization algorithms

In this section, we present two algorithms for multi-
jammer localization, M-cluster and X-ray. As we will
see through algorithm descriptions and simulations: M-
cluster is an efficient algorithm, but its localization ac-
curacy is affected by the distribution of sensor nodes
in the network. Hence, we design X-ray to improve the
localization accuracy, at the cost of higher computa-
tional complexity and the assumption that a jammed-
area mapping protocol such as JAM [31] is available in
the network.

4.1. The multiple cluster localization (M-cluster)
algorithm

We will describe our first multi-jammer localization
algorithm for WSNs, called Multi-cluster Localization
Algorithm (M-cluster), which divides jammed nodes
into different clusters based on clustering algorithms
and the number of jammers in the network.

Motivation. In a multi-jammer scenario, jammed ar-
eas covered by different jammers overlap and they to-
gether form a large jammed area. If we directly run an
existing single-jammer localization algorithm, the re-
sult will be inaccurate. However, if we can first find
out the jammed area belonging to each jammer, we
can then apply a single-jammer localization algorithm
to localize each jammer. Accordingly, we develop our
M-cluster algorithm, which groups jammed nodes into
clusters and applies the centroid localization (CL) al-
gorithm [16] to estimate each jammer’s location. The
M-cluster algorithm involves the following three steps,
as depicted in Fig. 6.
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Fig. 6. Overview of the multi-cluster localization algorithm in WSNs.

4.1.1. Feature selection or extraction
Clustering algorithms divide a group of objects into

subgroups based on similarity measures. Every clus-
tering algorithm is based on the index of similarity or
dissimilarity between data points, where the similar-
ity or dissimilarity measures rely on descriptions of
data points with features. To classify jammed nodes,
M-cluster first needs to choose features. Feature selec-
tion chooses distinguishing features from a set of can-
didates, while feature extraction utilizes some transfor-
mations to generate useful and novel features from the
original ones. Both feature selection and feature ex-
traction are very important to the effectiveness of clus-
tering applications. A different clustering criterion or
clustering algorithm, even for the same algorithm but
with different selection of parameters (features), may
cause completely different clustering results.

In our M-cluster algorithm, for N jammed nodes
with d features, we build anN×d pattern matrix to rep-
resent the pending data, and use the Euclidean distance
to describe quantitatively the similarity of two data
points or two clusters. The Euclidean distance between
nodes nx = (x1, x2, . . . , xd)

T and ny = (y1, y2, . . . ,
yd)

T is calculated as

D(nx, ny) =

⎛
⎝ d∑

j=1

(xj − yj)
2

⎞
⎠

1/2

. (5)

where x, y are features belonging to nx and ny, re-
spectively. In this paper, we select the coordinates of
jammed nodes as one feature for the similarity mea-
sure. Although some other features may also be ap-
plied, such as received signal strength (RSS), packet
deliver ratio (PDR) and so on, they are difficult to
be obtained in a jammed wireless sensor network. As
such, we do not choose them in this work.

4.1.2. Selection of clustering algorithms
The next step is to choose an appropriate clustering

algorithm to do the grouping by optimizing a criterion
function. A criterion function is constructed with the
similarity measures of features selected or extracted
in the previous step. Clustering techniques are gen-
erally classified as partitional clustering and hierar-
chical clustering, based on the properties of the gen-
erated clusters [33]. Partitional clustering directly di-
vides data points into some pre-specified number of
clusters without the hierarchical structure, while hi-
erarchical clustering groups data with a sequence of
nested partitions, either from singleton clusters to a
cluster including all individuals or vice versa. In hier-
archical clustering the goal is to produce a hierarchi-
cal series of nested clusters, ranging from clusters of
individual points at the bottom to an all-inclusive clus-
ter at the top, generating a tree structure called a den-
drogram. However, in the scenario of jammed-nodes
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clustering, we want to produce a one-layer partition of
the jammed nodes without any hierarchical structures.
Hence, we choose the partitional clustering approaches
to grouping nodes. Meanwhile, as jammed areas have
overlaps with each other in the multi-jammer scenario,
nodes in the jammed area may be affected by more than
one jammer. As such, jammed nodes may also belong
to more than one cluster.

Therefore, the fuzzy partitional clustering is much
more suitable for this special situation, as all data
points in the data set are allowed to belong to all clus-
ters with a degree of membership. In our multi-jammer
localization problem, we use a classic clustering al-
gorithm, Fuzzy c-Means (FCM) [33], which performs
clustering in a fuzzy way (i.e., objects can belong to
multiple clusters in a certain degree). FCM attempts to
find a partition, represented as c fuzzy clusters, for a
set of data objects xj ∈ �d, j = 1, . . . , N , while min-
imizing a cost function:

J(U,M) =

c∑
i=1

N∑
j=1

(uij)
αD2

ij , (6)

where

– U = [uij ]c×N is the fuzzy partition matrix and
uij ∈ [0, 1] is the membership coefficient of the
jth object in the ith cluster that satisfies the fol-
lowing two constraints:

∑c
i=1 uij = 1, ∀j, which

assures the same overall weight for every data
point, and 0 <

∑N
j=1 uij < N, ∀i, which assures

no empty clusters;
– M = [m1, . . . ,mc] is the cluster prototype (mean

or center) matrix;
– α ∈ [1,∞) is the fuzzification parameter and a

larger α favors fuzzier clusters;
– Dij = D(xj ,mi) is the Euclidean distance be-

tween xj and mi.

4.1.3. Localization calibration
Next, M-cluster computes cluster centers according

to the output of FCM partition. Only nodes in one clus-
ter can be used in the centroid localization (CL) al-
gorithm to compute the centroid of this cluster. Based
on the knowledge of jammer transmission range or its
scope, M-cluster improves results by producing an im-
itation for each jammed area, which is a circular area
centered at the estimated location of each jammer. If
the estimation perfectly matches the real location of
the jammer, then no boundary nodes should be covered
by the imitated jammed area. Hence, if some bound-

ary nodes are covered, M-cluster moves some cluster
centers to improve the final estimation accuracy.

More specifically, let us assume that a set of bound-
ary nodes {(Xi, Yi)} are covered by the imitation, a
corresponding jammer location estimation is (Xe, Ye),
and node (Xm, Ym) is a boundary nodem in {(Xi, Yi)}
that is nearest to the estimation. Then, the new coordi-
nate of the jammer is estimated as

(X̂e, Ŷe) =

(
Xe +Dstep × Xe −Xm

Dem
,

Ye +Dstep × Ye − Ym
Dem

)
,

where Dstep is a constant step distance, and Dem is the
distance between nodem and the estimation. M-cluster
does this improvement iteratively until no boundary
node is falsely covered. After this improvement, M-
cluster outputs the final estimations of jammers’ loca-
tions.

4.2. The X-rayed jammed-area localization (X-ray)
algorithm

In this section, we describe our second multi-
jammer localization algorithm, called an x-rayed jam-
med-area localization (X-ray) algorithm, which skele-
tonizes jammed areas and estimates jammer locations
based on the bifurcation points on skeletons of jammed
areas. Here, we show an overview of the x-rayed
jammer localization algorithm. As Fig. 7 shows, this
X-ray algorithm can be divided into three phases:
jammed-area mapping, jammed-area skeletonization
and jammer-location determination. A more detailed
algorithmic flowchart is shown in Fig. 8.

4.2.1. Jammed-area mapping
Wood et al. [31] have presented “JAM”, a jammed-

area mapping service, which can roughly produce a
jammed area. However, since their work mostly fo-
cuses on jammer detection, node communication and
protocol design, the precise jammed area is not defined
clearly. As sensor nodes in WSNs are interspersed in
a target field, and there are a lot of blank spaces be-
tween sensors, it is a challenge to generate the jammed
area simply and precisely. In X-ray, we compute a con-
vex polygon of jammed nodes as a jammed area for the
process that will follow. A convex polygon, also called
a convex hull or a convex envelope in mathematics, is
defined as a polygon with all its interior angles less
than 180◦; that is, all the vertices of the polygon will
point outwards, away from the interior of the shape.
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Fig. 7. An overview of X-Ray multi-jammer localization algorithm in WSNs.

Algebraically, the convex hull of X can be character-
ized as the set of all the convex combinations of finite
subsets of points from X , as in the following formula:

Hconvex(X) =

{
k∑

i=1

αixi | xi ∈ X,αi ∈ �,

αi � 0,
k∑

i=1

αi = 1, k = 1, 2, . . .

}
(7)

We show this step in Fig. 7(a), where the three-jammer
jammed area is denoted by a convex polygon envelop-
ing all jammed nodes. Only the space enveloped by the
convex polygon is regarded as the jammed area.

Although some contour-tracing algorithms can be
used to identify and produce the jammed area, they
mostly process integral images in pixels [4]. However,
here we only obtain images composed by a cluster
of points, and all pixels are separate, so contour trac-
ing algorithms will be unable to identify the jammed
area. Hence, in this jammed-area identification sce-
nario, we compute the convex polygon of all jammed-
node points in the field as the jammed area. This has
a few advantages for our localization algorithm. First,
the convex polygon is simple and easily computed.
There are many existing schemes to compute the con-
vex hull of points that can be operated unambiguously
and efficiently [8,23]. The complexity of the corre-

Fig. 8. An algorithmic flowchart of X-Ray.

sponding algorithms is usually estimated in terms of n,
which is the number of input points, and h, which is
the number of points on the convex hull. Second, us-
ing a convex polygon may reduce the impact of much
noise and fluctuation on the boundary of the jammed
area while conserving most of the information about
the jammed area; consequently, the skeletonization al-
gorithm (the next step) will easily process the jammed-
area map. This is because most skeleton algorithms are
sensitive to boundary deformation; that is, little noise
or a variation of the boundary often generates redun-
dant skeleton branches that may seriously disturb the
topology of the skeleton’s graph [1].
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Through simulations, we also notice that some un-
jammed nodes may be covered by our convex hull in
certain scenarios, which leads to concave cases. To ad-
dress this concave problem, we compute the convex
hull of the miscovered nodes, and subtract this area
from the original convex hull of the entire jammed
area, as in the following equation:

Hconcav = Hconcex −Hmiscovered.

4.2.2. Jammed-area skeletonization
In shape analysis, the skeleton (or topological skele-

ton) of a shape is a thin version of that shape that is
equidistant to its boundaries. The skeleton can serve
as a representation of the shape (it contains all the in-
formation necessary to reconstruct the shape). A for-
mal definition is as follows: a skeleton is the locus
of the centers of all maximal inscribed hyper-spheres
(i.e., discs and balls in 2D and 3D, respectively). An
inscribed hyper-sphere is maximal if it is not covered
by any other inscribed hyper-sphere. All points on the
final skeleton will have the same distance to more
than one boundaries of the jammed area. Specifically,
our X-ray algorithm will leverage the skeletonization
method proposed by Xiang [1], which can produce a
stable skeleton without spurious branches, and there-
fore provide accurate skeleton information for the fol-
lowing process. More details can be found in the refer-
ence [1].

4.2.3. Jammer-location determination and
improvement

As shown in Fig. 7(b), we can see the skeleton of the
jammed area has multiple bifurcation points (or skele-
ton joints), which are introduced by angles on the con-
vex polygon of the jammed area. Due to the discrete
distribution of sensor nodes in a WSN, on the edge
of the jammer’s influence region, the jammed area has
no smooth circular edge; hence, the skeleton of the
jammed area has branches (bifurcations) at the extrem-
ity of the main skeleton. These branches conserve the
location information of the jammers. Based on the co-
ordination information of these bifurcation points on
the skeleton, X-ray can roughly localize the multiple
jammers in WSNs. Then the bifurcation points can be
divided into groups based on a K-means clustering al-
gorithm. Finally, the centroid of the coordinates of all
points in one group is considered as the estimated lo-
cation of a jammer.

Once the locations of jammers are computed, X-ray
calibrates the result based on some specific heuristics.

First, as in the M-cluster algorithm, we consider the
falsely covered boundary nodes and calibrate the result
in a similar way. Second, we discover that when many
bifurcation points belong to one jammer, the cluster-
ing technique may falsely divide them into two clus-
ters, resulting in two jammers. X-ray discovers this er-
ror by using a filter that measures the distance between
two estimated jammers. As we previously discussed in
Section 3, for the purpose of jamming a greater area
with the same number of jamming devices, an adver-
sary should separate the jamming devices more. As
such, for two estimated jammers i, j, whose distance
satisfies the following condition:

Dij ∈ {d|d < ω(Ri +Rj)}, (8)

where R is the transmission range of jammers and ω
is the constant variable used in Eq. (2), X-ray makes
the following calibration. These two estimated jammer
locations will be merged into one, whose coordinate
is the central of the two estimated jammer locations.
Then X-ray generates an imitation of the jamming area
with one fewer jammers. Due to the lack of one jam-
mer, this imitation might miss some jammed nodes. If
so, X-ray records these jammed nodes that are uncov-
ered by the imitation and computes their average co-
ordinate as another estimated jammer location. After
finishing this calibration, X-ray reports the locations of
multiple jammers.

5. Performance evaluation

In this section, we first show our simulation setup
and performance metrics, and then compare our multi-
jammer localization algorithms under various network
conditions as a function of network node density, jam-
mer transmission power, jammer deployment scenario,
and number of jammers in WSNs.

A random-selection multi-jammer localization scheme.
For the purpose of comparison, we propose a naive
random-selection multi-jammer localization scheme as
the baseline scheme. This random scheme localizes
jammers based on the coordinates of jammed nodes.
After the number of jammers is estimated, it randomly
chooses their locations.

5.1. Simulation setup and performance metrics

In our simulation with MATLAB, we deploy sen-
sor nodes in a 400-by-400 meter region, with the nor-
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mal communication range of each node set to 30 me-
ters. Jammers are randomly located in the center of this
field, following the distance constraint stated in Sec-
tion 3. Unless specified, transmission ranges of jam-
mers are set the same (60 meters), and the number of
jammers is set to three. For our radio propagation chan-
nel model, we set some typical values for the param-
eters K = 31.54 and γ = 3.71. To find out the per-
formance of our algorithms under different node dis-
tributions, we use two network deployments: simple
deployment and mesh deployment. In simple deploy-
ment, following a uniform distribution nodes are ran-
domly disseminated in the region, so that nodes may
congregate at some spots and miss other areas. In mesh
deployment, to increase the coverage of the network,
the region is meshed into smaller grids, and nodes are
divided according to the number of grids. The nodes
are uniformly deployed in each grid. For each experi-
ment, we generate 1000 network topologies to obtain
higher accuracy.

To measure the performance of the algorithms, we
use localization error as the metric, which is defined
as the Euclidean distance between the estimated jam-
mer locations and the true locations. More specifi-
cally, let (xt, yt) be the true location of a jammer, and
(xe, ye) be its estimated location. The localization er-
ror is Err =

√
(xe − xt)2 + (ye − yt)2). We show

both the cumulative distribution functions (CDF) of av-
erage localization errors and bar charts of the mean lo-
calization errors of 1000 simulations.

5.2. Evaluation results

Impact of node density. First, we study the impact of
node density on the performance of our algorithms. In
this part, we adjust the total number of nodes by set-
ting it to 400, 500 and 600, respectively and calculate
the mean errors for both M-cluster and X-ray. Two sce-
narios of simple deployment and mesh deployment are
shown in the same figure. From Fig. 9(a), we observe
that X-ray has consistently better performance than M-
cluster in all node density and node deployment se-
tups. In the mesh deployment scenario, X-ray’s mean
errors fall between 6 to 9 meters, while M-cluster’s
mean errors fall between 8 to 11 meters. M-cluster
has a greater improvement in the localization accuracy
as the node deployment model changes from the sim-
ple style to the mesh style; in other words, M-cluster
is more influenced by the deployment style of sensor
nodes in WSNs. Meanwhile, both M-cluster and X-ray
have better performance when node density increases.

Fig. 9. Impacts of different conditions on X-ray and M-cluster in
multi-jammer localization: (a) Node density, (b) Jammer transmis-
sion range, (c) Jammer number.

We also provide a view of CDF curves for both our
algorithms and the random scheme in Fig. 10. Here, we
only show the performances in the 400 and 600 node
cases under the simple deployment model. Again we
observe that X-ray has the best performance, 90% of
the time X-ray can estimate the three jammers’ loca-
tions with mean errors less than 15 meters, while M-
cluster achieves 20 meters 90% of the time. The re-
sults of both algorithms improve when node density
increases while no clear influence is observed on the
random scheme.

Impact of jammer transmission range. To study the
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Fig. 10. Impact of different node density with the transmission range
set to 60 meter: (a) N = 400, (b) N = 600.

impact of jammer transmission range on the perfor-
mance of our algorithms, we evaluate these algorithms
in two settings: same fixed transmission ranges and
random transmission ranges. In the fixed transmis-
sion range scenario, we fix the jammer’s transmission
ranges at 60, 70 and 80 meters, respectively. In the
random transmission range scenario, the jammer trans-
mission ranges are randomly chosen from a certain
range in [60, 80], respectively. (Once the transmission
range is chosen, it would not change in that simula-
tion). As a result, each jammer has a different transmis-
sion range. From Fig. 9(b), the mean-error figure, we
observe that, with the increase of jammer transmission
range, X-ray has reduced localization errors, while the
error of M-cluster increases. This is an interesting ob-
servation, and it can be explained as follows. As the
jammer transmission range increases, the jammed area
becomes bigger; as a result, more sensor nodes are cov-
ered in the jammed region. For X-ray, a bigger jammed
area will lead to a larger boundary consisting of more
jammed nodes, so more branches on the skeleton of
the jammed area will be created and X-ray can then
obtain more information about the jammers, improv-
ing the final estimation accuracy. For M-cluster, a big-
ger jammed area covers more space and nodes. It is

Fig. 11. Impact of different jammer transmission ranges: (a) R =
60, (b) R = 80, (c) R ∈ [60,80].

likely that more non-uniformly deployed nodes are in-
troduced into the jammed area, negatively affecting the
results of M-cluster.

The CDF performance curves of all algorithms un-
der different jammer ranges are shown in Fig. 11. In
Figs 11(a) and (b), the jammer transmission ranges are
set to 60 and 80 meters with the simple deployment
model. We observe that as the transmission range of
the jammers increases to 80 meters, both M-cluster
and the random scheme have visible performance de-
clines, while X-ray has a little improvement. As we ex-
plained previously, the increment of jammers’ trans-
mission range has different impacts on X-ray and M-
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Fig. 12. (1) Impact of different jammer deployments: (a) ω = 0.3, (b) ω = 0.7. (2) Impact of different jammer numbers: (c) N = 2, (d) N = 4.

cluster. In Fig. 11(c), we show the performance of these
algorithms under the condition of random transmission
range of jammers, which means each jammer in the
network randomly chooses its transmission range (R ∈
[60, 80]). Under this condition, X-ray still achieves a
15-meters estimation error 90% of the time, while M-
cluster achieves 20 meters 90% of the time.

Impact of jammer deployment. As introduced in
Eq. (2), we use ω to denote the overlapping degree of
multiple jammers. To study the impact of jammer de-
ployment, we change the deployment condition, ω, in
Eq. (2), from 0.3 to 0.7. The transmission range is set
to 60 meters with 500 nodes randomly deployed in the
field. In Figs 12(a) and (b), both M-cluster and X-ray
have better localization performance when ω increases
from 0.3 to 0.7. As ω denotes the overlapping degree
of jammers in WSNs, the result indicates that our algo-
rithms have better performance when jammers are less
overlapping. This is because when overlapping degree
becomes smaller, jammers get farther away from one
another. Thus, the overlapping effects become less and
the differentiation of jammers becomes easier. Mean-
while, in Fig. 12(b), we observe that M-cluster has
a big improvement when the overlapping degree de-
creases. When jammed regions are less overlapping,

clustering algorithm can group jammed nodes more ac-
curately.

Impact of jammer numbers. We also study the effect
of the number of jammer numbers by varying it from
2 to 5. In all the cases, we set the jammer transmis-
sion range to 60 m and deploy 500 nodes in the field.
The results are shown in Fig. 9(c), where X-ray has the
best performance in all situations and the mean errors
under the mesh deployment are below 15 meters when
the jammer number is increased to 5. We observe that
the performance of all algorithms decrease with more
jammers. Figures 12(c) and (d) show the CDF curves
of the algorithms’ performance when there are 2 and
4 jammers in the network. We observe that when there
are two jammers to be localized, more than 90% of the
time X-ray can estimate the jammers’ locations with an
error less than 10 meters, and M-cluster reaches 13 me-
ters accuracy 90% of the time.

We also show how the performance of our algo-
rithms degrades when the number of jammers further
increases. The results are presented in Fig. 13, where
the number of jammers is 8 and 10, respectively. We
observe that in these cases, the errors of our two algo-
rithms approach 30 m and 40 m, respectively. Whether
such big errors are acceptable or not depends on the ap-



32 T. Cheng et al. / M-cluster and X-ray: Two methods for multi-jammer localization in wireless sensor networks

Fig. 13. The limit of our algorithms w.r.t. number of jammers (a)
N = 8, (b) N = 10.

plication scenarios. If one considers localization errors
cannot exceed half of transmission range, 10 could be
the upper limit for jammer number in our algorithms.

In this part, we also studied the negative impact
of false jammer number determination on the perfor-
mance of our algorithms. In Fig. 14, we show that the
CDF of localization errors when the true number of
jammers, Nt, is 3, but the estimated jammer number,
Ne, is (a) 2, and (b) 4 (in these two cases, we compute
the localization errors without considering the missed
or double counted one.). From the simulation result,
we can observe that due to the false detection of the
jammer number, both our algorithms have a decline in
localization accuracy, but X-ray still has estimation er-
rors below 19 m for 90% of the time, and M-cluster
below 21 m for 90% of the time.

6. Discussion and future work

In this paper, we focus on addressing the multi-
jammer localization problem where multiple jammers

Fig. 14. Impact of jammer-number false detection: (a) Ne = 2, (b)
Ne = 4.

perform collaborative jamming in WSNs with over-
lapping jammed areas. While our results show some
promise, fully addressing this problem still requires
much effort. Next we discuss some of the issues as well
as possible solutions.

The first challenge is that attackers may use other
types of jamming devices that are more powerful,
e.g., using directional antennae. In the case of di-
rectional antennae, the jammed area might become
more irregular, causing higher localization errors. Tor-
rieri has proposed a direction-finding and localization
method based on multiple antennae [29]. His scheme
is more resistent to such jamming attacks but currently
only works for a single jammer. How to combine his
scheme with our algorithms for multi-jammer local-
ization could be an interesting direction for our future
work.

The second challenge is how to determine jammer
number in WSNs precisely. In our work, through com-
puting the size of a jammed area while assuming an
adversary attempts to maximize the coverage of jam-
ming with a fixed number of jamming devices, we use
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two simple ways to identify the number of jammers.
These algorithms are efficient but likely result in in-
creased errors as the jammer number goes up. Note that
when the jammed areas are disconnected, each individ-
ual area can be treated separately with our algorithms.
Therefore, the question is how to accurately determine
the number of jammers within one large jammed area.
Clearly, if the adversary does not want to maximize his
jamming effect, he may deploy some jamming nodes
very closely (i.e., violating our distance constraint). As
a result, we may not be able to accurately estimate the
number. Indeed, if the jamming nodes simultaneously
vary their transmission powers so that they disguise
their number or if an unjammed area is totally sur-
rounded by jammed areas (hence no information about
the unjammed nodes can be obtained), jammer-number
identification could become an undecidable problem.

Fortunately, our ultimate goal is to localize the jam-
mers, not to estimate their numbers. As such, we can
have some additional mechanisms to improve the ac-
curacy. First, we may overcome the limitation by scan-
ning the results of the possible jammer numbers (con-
sidering not only the calculated jammer number n, but
also the numbers n − 1 and n + 1), and choose the
best matched estimation result. Second, the defender
is not limited to a single round of localization. It can
iteratively localize the jammers in a jammed area un-
til no jammer remains. That is, after each round of lo-
calization, the localized jammers will be removed or
destroyed immediately and the localization algorithm
will be run again when jamming continues. Third, we
may improve the localization accuracy of our algo-
rithms. In M-cluster, we only choose the coordinates
of jammed nodes as the clustering features; however,
some other information may be used to improve final
partitions; e.g., RSS of jammed nodes.

In our simulation results, we discover M-cluster
is not as good as X-ray under the proposed differ-
ent conditions. However, compared with X-ray, M-
cluster has some considerable advantages on compu-
tational complexity (much less computation than X-
ray) and practical flexibility (no reliance on the avail-
ability of a jammed-area mapping service [31] that is
itself very complex). In our M-cluster algorithm, we
choose node coordinates as the feature used in clus-
tering algorithms, while other characteristics might be
extracted to improve the grouping results. This is our
future direction to improve the M-cluster algorithm. In
the X-ray algorithm, we choose the convex envelope to
compute the jammed area, as it is efficient and suitable
to derive a unique simple skeleton by the skeletoniza-

tion technique. However, some information may be un-
available due to the requirement of convexity. A future
improvement of X-ray would be to generate a more ac-
curate jammed area that can preserve the most infor-
mation of jammers. In conclusion, choosing M-cluster
or X-ray is primarily a trade-off between localization
accuracy and computational requirements.

7. Conclusion

This paper studied a multi-jammer localization prob-
lem in wireless sensor networks and proposed two
multi-jammer localization algorithms: M-cluster and
X-ray. The algorithms attempt to determine the loca-
tions of multiple jammers in WSNs in one run. We
made our comprehensive simulation and comparison,
and applied our algorithms under variable conditions
including different node densities, transmission ranges,
overlapping degrees, and jammer numbers. The sim-
ulation results show that our algorithms achieve good
performance in localizing the jammers under the di-
verse situations. Future directions include an improved
jamming propagation model with shadowing and fad-
ing, more accurate determination of jammer number,
and further improvement of both X-ray and M-cluster.
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