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Developing a Hybrid Intrusion Detection System
Using Data Mining for Power Systems

Shengyi Pan, Member, IEEE, Thomas Morris, Senior Member, IEEE, and Uttam Adhikari, Student Member, IEEE

Abstract—Synchrophasor systems provide an immense volume
of data for wide area monitoring and control of power sys-
tems to meet the increasing demand of reliable energy. The
construction of traditional intrusion detection systems (IDSs)
that use manually created rules based upon expert knowledge is
knowledge-intensive and is not suitable in the context of this big
data problem. This paper presents a systematic and automated
approach to build a hybrid IDS that learns temporal state-based
specifications for power system scenarios including disturbances,
normal control operations, and cyber-attacks. A data mining
technique called common path mining is used to automatically
and accurately learn patterns for scenarios from a fusion of
synchrophasor measurement data, and power system audit logs.
As a proof of concept, an IDS prototype was implemented and
validated. The IDS prototype accurately classifies disturbances,
normal control operations, and cyber-attacks for the distance
protection scheme for a two-line three-bus power transmission
system.

Index Terms—Cyber-attacks, data mining, distance protection,
intrusion detection system (IDS), power system, synchrophasor
system.

I. INTRODUCTION

THE NEXT generation power system, also known as the
smart grid, will rely on advanced technologies such as

synchrophasor systems for wide area monitoring and con-
trol in order to meet the increasing demand of reliable
energy. While in the past, power system components were
isolated, they are now interconnected via information infras-
tructure, e.g., Ethernet, and therefore are under the threat of
cyber-attacks. Due to the critical role that the power system
plays in our society, there is a common agreement that the
electric power grid needs to be better secured to ensure con-
tinually available power for the nation [1]. There have been
multiple documents from different organizations which pro-
vide recommendations and guidelines for industry to better
secure their facilities [2], [3]. However, the U.S. Government
Accountability Office (GAO) has concluded that current guide-
lines are insufficient to securely implement the smart grid and
the GAO calls for research and development to improve upon
current security mechanisms [4].
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Intrusion detection systems (IDSs) identify activities that
violate the security policy of a computer system or network.
IDS are a necessary complement to preventive security mecha-
nisms such as firewalls because IDS detect attacks that exploit
system design flaws or bugs and IDS provide forensic evidence
to inform system administrator’s reactions to cyber-attacks [5].
The increasing coupling of cyber infrastructure and physical
devices of the smart grid makes a traditional host-based IDS
inadequate because host-based IDS monitor host in the system
individually while power system control algorithms such as the
distance protection scheme usually involve multiple devices at
multiple locations. Therefore, new IDS should have the ability
to take multiple data sources into account and perform stateful
monitoring at the system level. Manually building a stateful
IDS is a knowledge intensive task which requires vulnerabil-
ity analysis and manual creation of rules and patterns which
describe attacks and normal behaviors. The manual develop-
ment process results in limited scalability and updates are slow
and expensive.

This paper documents a systematic and automated approach
to building a hybrid IDS that leverages features of signature-
based and specification-based IDS. The IDS classifies system
behaviors over time as specific disturbances, normal control
operations, or cyber-attacks. Sequences of critical states, called
common paths, provide a specification or signature for each
scenario. A fundamental ingredient of the IDS presented in this
paper is a data mining technique that aggregates synchrophasor
measurement data and audit logs from multiple system devices
to learn the common paths. The automatic approach eliminates
the need to manually analyze and manually code patterns and
is able to handle very large amounts of data.

Common paths are signatures of events present in a train-
ing database. Common paths are also specification since
they describe expected system behaviors related to normal
expected system behaviors and cyber-attacks behaviors. The
IDS matches a temporal set of monitored system states to
common paths to make a classification. Behaviors which
do not match a common path are considered unspecified
events and are either zero-day attacks or unknown system
behaviors.

A case study is included to demonstrate that the proposed
IDS provides high detection accuracy for both known and
unknown scenarios and thus is suitable for mission critical
environments such as power systems.

The rest of this paper is organized as follows. Section II
reviews related works. An overview of the test bed and
simulated power system scenarios is presented in Section III.
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Section IV introduces the procedure to construct the proposed
IDS. Experiments and results are discussed in Section V.
The conclusion is provided in Section VI.

II. RELATED WORKS

A. IDS for Smart Grid

In recent years, the emergence of the smart grid has moti-
vated research into a variety of IDS techniques. People with
different backgrounds have created various IDS that focus on
different aspects of the smart grid. One type of IDS research
focuses on intelligent electronic device (IED) security within
the smart grid [6], [7]. This type of IDS is usually host-based
and thus only identifies attacks against a single IED/network
appliance in the system based on its intended behaviors. While
host-based IDS secure individual devices in the smart grid,
they do not provide stateful monitoring at the system level.
More advanced IDS of this type consider behaviors of multi-
ple devices within the system to obtain system level detection.
Mitchell and Chen [8] proposed a rule-based IDS for the elec-
tric grid by considering the behaviors of three types of physical
devices in the electric grid: 1) head-ends; 2) distribution
access points/data aggregation points; and 3) subscriber energy
meters. Readings from 22 sensors from the three types of
devices were used as state components. The method quantized
each of the 22 components into a limited number of ranges.
Three state machines with 3456, 1728, and 3456 states were
manually built for the three devices and the state machines
act as specifications for the three types of devices. Manual
construction of such an IDS is cost prohibitive and dies not
scale for larger power systems. Additionally, changes to sys-
tem behaviors require updating the specification state machines
via the manual process.

Network-based IDS leverage communication traffic in
the information infrastructure of the smart grid to detect
cyber-attacks. IDS can leverage trust systems which moni-
tor communications to and from a device [24] to validate
communications and limit command and control actions to
those approved by the trust system. Yang et al. [9] proposed
an IDS for synchrophasor systems that detects cyber-attacks
by using white lists of packets with legitimate source IP
addresses, correct packet formats, and legal values for fields.
The Yang IDS was evaluated for man-in-the-middle (MITM)
and denial of service attacks against synchrophasor devices
using the IEEE C37.118 protocol. Zhang et al. [10] pro-
posed a distributed IDS that analyzes communication traffic
at different network levels of the smart grid including home
area networks, neighborhood area networks, and wide area net-
works. An intelligent module was deployed at each level
to classify malicious data and possible cyber-attacks using
data mining algorithms. These modules then communicate to
provide a system level view of the communication network to
improve the detection accuracy. Hadeli et al. [11] proposed an
anomaly detection technique for industrial control systems that
whitelists legitimate communication patterns extracted from
different industrial control system protocols available in the
system. The Hadeli IDS uses a system description file to
provide a description of the overall expected communication

patterns in the industrial control system. The IDS proposed
by [9]–[11] can detect malicious changes to network traf-
fic, but all three IDS fail to detect malicious payload that
results in invalid changes to the physical system. For example,
Hadeli et al.’s [11] method cannot detect an injected but other-
wise valid command to trip a protection relay from a valid IP
address which will take a transmission line out of service and
cause a blackout. A specification-based IDS was developed
to track sequential events in an advanced metering infras-
tructure (AMI) [12]. A manually constructed state machine
was used to extract legitimate sequential system states from
two AMI protocols and devices status. To prove the correct-
ness of the state machine, a model checking technique was
used to verify the specifications. This IDS is not applicable
for use with transmission systems because transmission sys-
tems have far more control actions and disturbances than AMI.
As such, manually building such a state machine would be
very expensive.

Other proposed IDS for smart grid leverage power system
theory. For instance, Valenzuela et al. [13] used optimal power
flow programs to detect cyber-attacks which alter system
measurement data to cause the power flow to be dispatched
erroneously. Talebi et al. [14] proposed a mechanism for iden-
tification of bad data attacks in a power system using weighted
state estimation. Although these works are all proven capable
of detecting altered data, these IDS are limited to one type of
attack and cannot be extended to detect other attacks against
power systems.

B. Accuracy of Specification-Based IDS

The detection accuracy of specification-based IDS depends
on how accurately the specifications describe system
behaviors. A promising way to improve the accuracy of
specifications is through the use of data mining. A data min-
ing technique was applied to an IDS framework proposed
by Lee et al. [15] that combined signature-based IDS and
anomaly-based IDS. Data mining programs were applied to
a large volume of log data to learn attack signatures and nor-
mal behavior patterns and automatically create detection rules.
Lee et al. [15] showed that the signatures for attacks and pat-
terns for system normal behaviors created using their data min-
ing technique are accurate by comparing their detection results
to all other participants in the Defense Advanced Research
Projects Agency intrusion detection evaluation program pre-
pared by MIT Lincoln Laboratories. Lee et al.’s [15] IDS was
originally designed for stateless IDS therefore it cannot be
directly applied to specification-based IDS. A new data mining
algorithm must be developed to discover sequential events for
specifications.

C. Data Mining Techniques for Learning Specifications

A specification for a scenario contains a sequence of exe-
cution events or system states. The nature of specifications
requires the data mining technique applied to the proposed
IDS to be able to mine sequential patterns and identify
the dependent relationship between events. The data min-
ing technique used in this paper uses the mining sequential
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patterns technique which discovers patterns of activity from
time ordered data. The mining sequential patterns algorithm
was first mentioned in [16]. Lin et al. [17] applied it to
discover patterns in clinical client care management process
data that consists of patient records and log data over a period
of treatment time. This technique was extended in [18] by
employing a Bayesian network to graphically represent pat-
terns of different hemodialysis processes which consists of
a sequence of patients’ physiological states that are snap-
shots of clinical log data and patient records, e.g., body
temperature, pulse rate, etc. In Lin et al.’s [18] work,
states were assigned with probabilities for the purpose of
prediction.

For the work presented in this paper, the FP-growth [19]
algorithm was used in the training process to mine frequent
sequential patterns from power system data. FP-growth is an
implementation of frequent item set mining. A common exam-
ple of frequent item set mining is market basket analysis in
which stores attempt to find associative relationships among
products purchased by multiple customers, such as finding
products often purchased together. Common path mining is
similar to market basket analysis except common path min-
ing finds system states which are commonly found together in
a set. Common path mining also preserves temporal order of
the system states.

III. COMMON PATH MINING

This paper uses the concept of a common path to repre-
sent the patterns encoded in a fusion of time stamped sensor
data. A common path consists of a sequence of critical system
states in temporal order. Describing the common path mining
algorithm requires definitions of the concepts of state, feature,
sequence, and path.

A state is used to represent a system’s instantaneous status.
A state consists of a set of observed system measurements
or features f as well as a normalized time stamp (TS),
i.e., S = {TS, f1, . . . , fn}. The value of a feature is read from
a sensor. The possible values for a feature are in a range
called its domain. A feature that has continuous values in
its domain should be discretized to finite ranges to avoid an
infinite state space.

A path P is a list of observed system states arranged
in temporal order according to their TSs, namely, Pi =
{S1, S2, . . . , Sn}, ordered by increasing time. A sequence s
is a subset of a path, i.e., s ⊆ P. We denote a sequence s by
{Si+1, Si+2, . . . , Si+m}. A path P contains sequence s if all
of the elements in s appear in P in the same order. In a set
of sequences, a sequence is maximal if the sequence is not
contained in any other sequences.

Let G be the set of all observed paths for a scenario Q
so G = {P1, P2, . . . , Pn} where n is the number of observed
paths for Q. A path supports sequence s if the sequence is
contained in the path. Support can be defined as a metric in
which the support of sequence s is the percentage of paths in G
that contain sequence s. A common path for scenario Q is any
sequence whose support is greater than a minimum support
threshold and is maximal. There may be multiple common

TABLE I
EXAMPLE PATHS FOR A SCENARIO

paths for a single scenario. Common paths reflect the states
that occur most frequently for a scenario.

The common path mining algorithm consists of six steps.
The first five steps create paths, P, for each instance of a sce-
nario. First, raw data is collected from various sensors in the
system. Second, raw data is fused or merged into a single
database. Sensors may measure at different times and frequen-
cies. Lower frequency sensor data is up sampled so that all
high frequency measurements are maintained. Third, measure-
ments which are continuous are quantized to minimize the
total number of possible states in a database. Expert knowl-
edge is used to design ranges for each sensor. A database is
a table with columns for each sensor and rows representing
the state of the system at increasing TSs. In the fourth step,
the database is parsed to find all unique states. Fifth, the
database is compressed by merging all rows which are the
same state. In the sixth step, all known paths for a scenario,
the set G, are processed with the mining frequent patterns
algorithm FP-growth [19] to mine for frequent sequences of
states. The support threshold is set via trial and error or using
expert knowledge. Maximal frequent sequences are common
paths for the scenario.

Example: Consider the set of paths shown in Table I. For
the example G = {P1, P2, P3, P4, P5}. If the minimum sup-
port threshold is set to 60%, the set of frequent sequences
in G which meet the minimum support threshold includes
{S1, S2, S3, S4, S5}, {S1, S3, S4, S5}, and {S1, S4, S5}. For this
example, {S1, S2, S3, S4, S5} is maximal and is therefore the
common path. The sequences {S1, S3, S4, S5} and {S1, S4, S5}
are not maximal because they are contained in {S1, S2, S3,
S4, S5}. Alternatively, if the minimum support threshold is
changed to 70%, the set of sequences in G which meet the
minimum support threshold includes only {S1, S4, S5}. Since
{S1, S4, S5} meets the threshold in this case, it is maximal
and is a common path.

Table I also provides examples of possible types of paths
that could be found in the dataset. P1 represents the ideal
case for a path representing a scenario. P2 matches P1 except
a subset of states are delayed. This may occur due to a mea-
surement error or due to power system dynamics. P3 contains
an extra state. Extra states may occur when a feature oscillates
during a state transition. P4 represents the case when a path
is similar but a state is different from the ideal case. This can
happen when an event that should have occurred at T2 occurs
at T3 instead, which mangles states S2 and S3 (they change
to S11, S12). P5 represents an error path. In the error path no
sequences match the ultimate common path.

The common path is used as a specification during
classification. Changing the minimum support threshold,
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changes the number of states in a common path and can affect
classification accuracy. It is not necessary to find a common
path which matches the ideal path, rather the goal is to find
a common path which is unique for a scenario and which
leads to maximum classification accuracy. For a noisy system
a shorter common path may yield better classification results.

A common path for a single line-to-ground (SLG) fault
should have a sequence of critical states representing “current
going high,” “relay trip,” and “current falling to zero.” The
ability to find a common path is greatly dependent on the
quality of paths in G. For example, if there are a many error
paths in G it will be difficult to find sequences which meet
the minimum support threshold.

Classification is performed by comparing observed system
states to the states of known common paths. The path under
test (PUT) is compared to all common paths. If cpi ⊆ PUT
then cpi is a candidate common path. The PUT is classified
as matching the scenario of the maximal candidate common
path from the set of candidate common paths. If more than
one candidate common path are maximal the PUT is classified
as unknown.

The rest of this paper presents a case study which applies
the common path mining algorithm to a three-bus two-line
transmission system for classifying 25 power system scenarios.

IV. TEST BED ARCHITECTURE

A. Distance Protection for Transmission Lines

The distance protection scheme is the most popular scheme
for protecting transmission lines. The principle of operation
recognizes that the impedance of a high-voltage transmission
line is approximately proportional to its length. This means the
impedance “seen” by the relay during a fault is proportional to
the distance between the point of fault and the relay. Distance
relays are encoded with multiple protection zones. Each zone
is assigned an apparent impedance threshold and a trip time.
Relays have over lapping protection zones to provide system
protection redundancy. One relay’s zone 1 is part of another
relay’s zone 2 and so forth. For this case study, the distance
protection scheme was simplified by disabling reverse time
delay backup and limiting the number of protection zones for
each relay to 2. Fig. 1 shows a three-bus two-line transmission
system that is modified from IEEE four-bus three-generator
system. Relay R1’s zones 1 and 2 are shown as dashed line
boxes. Each relay provides primary protection up to 80% of
the line (zone 1 protection) and backup protection (zone 2
protection) up to 150% of the line in case that the primary
protection fails. The trip time for zone 1 protection is con-
figured to be instantaneous while the trip time for the zone 2
protection is time-delayed to avoid false tripping unless the
primary relay fails.

B. Test Bed Architecture

A hardware-in-the-loop test bed, shown in Fig. 2, was used
for power system scenario implementation and data genera-
tion. A real time digital simulator (RTDS) was used to simulate
transmission lines, breakers, generators, and load. Four phys-
ical relays were wired to the RTDS in a hardware-in-the-loop

Fig. 1. Distance protection scheme in a three-bus two-line transmission
system.

Fig. 2. Hardware in the loop test bed.

configuration. The relays implemented the two zone distance
protection scheme. The relays trip and open the breakers when
a fault occurs on a transmission line. All relays included
integrated phasor measurement unit (PMU) functionality to
measure power system transmission line state, however, the
PMUs were drawn separately in the graph because relays
are controlled by Modbus/transmission control protocol (TCP)
and PMUs stream synchrophasor measurements using the
IEEE C37.118 protocol. The PMUs streamed real-time syn-
chrophasor measurement data at a rate of 120 samples/s, to
the phasor data concentrator (PDC) which aggregates net-
work frames from multiple PMU and forwards the aggregated
synchrophasor frames to the OpenPDC application. A set
of scripts control the simulation by inducing random state
changes, capturing measurements, labeling captured data by
scenario type, and merging data from multiple sources into
a single file. The synchrophasor measurement data includes
of frequency, current phasors, voltage phasors, and sequence
components. The four relays were sources of time stamped
relay state changes. A signature-based IDS, Snort, runs on
a PC to detect network activity. Snort provides alerts when
it detects remote tripping command activities in the network.
Snort, by itself, cannot distinguish between legitimate and ille-
gitimate remote trip commands since they appear the same
on the network. A control panel computer simulates energy
management system (EMS) functionality. The EMS simulation
was used to disconnect a transmission line for maintenance by
remotely tripping relays via a Modbus/TCP network packet.
An EMS log provides the TS of such a line maintenance event.
For this paper, it is assumed that an attacker computer has suc-
cessfully penetrated the utility’s operational network and can
launch cyber-attacks from a node on the operational network.
Scenarios of power system disturbances, normal operations,
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TABLE II
SIMULATES SCENARIOS

and power system cyber-attacks are applied against the sim-
ulated power system and its components. Data logs were
captured from the synchrophasor system, relays, Snort, and
the simulated EMS. All data logs were time stamped and with
the name of the scenario being simulated.

C. Test Bed Scenarios

The power system scenarios used to train and validate the
IDS presented in this paper have been grouped into three cate-
gories: 1) power system single-line-to-ground faults; 2) normal
operations; and 3) cyber-attacks. Each category is described in
this section with details. There are a total 25 scenarios each
named with capital “Q” along with a number. The system load
was randomized at the beginning of each scenario. Power sys-
tem SLG faults belong to the shunt fault family and account
for up to 70% of faults in a power system [20]. For this paper,
only phase-a-to-ground faults were simulated as each phase to
ground fault has similar characteristics. The phase-a-to-ground
fault is abbreviated as “fault” in the rest of this paper. Table II
provides a summary of the simulated scenarios used to validate
the proposed IDS.

For the SLG fault scenarios (Q1 and Q2) the relay operates
instantaneously for zone 1 and after a time delay for faults
in zone 2. The auto-reclosing scheme models a high speed
three-phase reclosing scheme [21] which closes the breaker
after one second.

The SLG fault replay attacks (Q3 and Q4) attempt to emu-
late a valid fault by altering system measurements followed
by sending an illicit trip command to relays at the ends of
the transmission line. This attack may lead to confusion and
potentially cause an operator to take invalid control actions.

A python script was used to initiate a MITM attack between
the hardware PDC and the OpenPDC application. The attacks
replay synchrophasor measurements from a valid SLG fault
then replay commands to trip the relays on the affected line.

The transmission line maintenance scenarios (Q5 and Q6)
simulate the situation when an operator remotely trips relays
to open breakers at both ends of a transmission line to take the
line out of service for line maintenance. The operator initiated
remote trip commands are recorded and time stamped in the
control panel log.

Power system cyber-attacks may originate from insiders,
amateur hackers, political activists, criminal organizations,
governments, and terrorists. Cyber-attacks may appear as
a nuisance or may bring the system to collapse. Attacks
can be carried out from within power system substations,
a control center, or in transmission and distribution infrastruc-
tures by exploiting weaknesses in physical security policies.
Alternatively, attacks may take advantage of security flaws and
vulnerabilities in software, devices, communication infrastruc-
tures, or communication protocols to electronically infiltrate
power system operational networks. Three types of attacks are
simulated: 1) relay trip command injection; 2) disabling relay
function; and 3) SLG fault replay.

Relay trip command injection attacks (Q7–Q12) create
contingencies by sending unexpected relay trip commands
remotely from an attacker’s computer to the relays at the ends
of the two transmission lines. The trip command injection
attack used for this paper closely mimics the line maintenance
scenario. The malicious trip command originates from another
node on the communications network with a spoofed legiti-
mate IP address. Since the attack is not from the control panel
computer there will be no record in the control panel log, how-
ever, the Snort network traffic monitor will detect this remote
trip command.

The disabled relay attacks (Q13–Q24) mimic the effects of
insiders taking illicit control actions or malware taking control
of software systems to manipulate control devices. A python
script accesses a relay’s internal registers via Modbus/TCP
commands sent from the attacker’s computer which modify
the relevant relay settings. The disabled relay attacks overlap
fault and maintenance events. The final scenario, Q25, repre-
sents a stable system state. For this scenario, the load may
change, but no other attacks, disturbances, or control actions
are simulated.

Scenarios start and end with the system in a stable state.
As such, all faults are cleared, transmission lines taken out of
service for maintenance are returned to service, and all attacks
end before the next scenario is simulated.

D. Test Data

Test data used for this paper includes data logs associ-
ated with 10 000 simulated instances of the 25 aforemen-
tioned scenarios. The data log is a comma separated file
with labeled tuples that include 56 sensor measurements
and a TS. The 56 data sources consist of 52 synchropha-
sor measurements; 13 from each relay location on Fig. 1.
The synchrophasor data from a single relay consists of phase
voltage and current phasor magnitude, zero, positive, and

https://www.researchgate.net/publication/258222931_Power_System_Analysis?el=1_x_8&enrichId=rgreq-d798441a-6566-4a52-8eb3-cd8ce1631c16&enrichSource=Y292ZXJQYWdlOzI3NTY1MjIwMDtBUzoyMjQwOTk4MzkyODcyOTZAMTQzMDQ0MDk3MzA4Mg==
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negative sequence voltage, and current phasor and appar-
ent line impedance. The synchrophasor data was sampled at
120 times/s. Relay status information, breaker events, Snort
alerts, and control panel alerts were also logged. All logged
data was merged into a single dataset.

An instance of a single scenario is represented by approx-
imately 2000 tuples in the test data set. This corresponds to
approximately 17 s of simulated system time per scenario.
In total, the test data has more than two million tuples. Each
tuple in the test data is labeled. Approximately, half of the test
data was used to train the classifier and half was used to test
classification accuracy. For this paper, 15 features were used;
phase current magnitude measured at each relay, relay status
for each relay, Snort alert status for each relay, and control
panel remote trip status.

V. TRAINING THE IDS

This section documents the IDS construction process. First,
the data formatting step converts input data logs to a mea-
sured events database (MED). Next, the specification learning
steps process the MED to learn common paths, a unique set
of system states in temporal order, for each labeled scenario.
Finally, a graph is constructed which includes common paths
for all scenarios.

A. Data Formatting

The first step of the data formatting process is feature
quantization. Feature quantization requires domain expertise.
Features with values which can take continuous values are
mapped into finite ranges to limit state space size. Features
which take discrete values are generally left unchanged unless
the number of discrete values is large.

The phase current measurement is a real number and there-
fore should be grouped into discrete ranges. Phase current
magnitude was separated into normal and high ranges. The
normal range was 0–1199 A. The high range was all val-
ues greater than or equal to 1200 A. The relay status, Snort
alert, and control panel remote trip status features are all
binary. Possible relay status values are tripped and not tripped.
Possible Snort alert status values are alert and no alert. Possible
control panel remote trip status values are tripped and not
tripped.

The MED is a merged compressed data set with quantized
features. Data from sensors with lower sample rates is up
sampled to match the sampling rate of the sensor with the
highest sampling rate. The up sampling process depends upon
the sensor type. Continuously sampled sensors update their
value at each sample period-based upon the current measured
state. The current magnitude and relay status are continu-
ously sampled. Event-based sensors provide a single message
when a state change occurs. The Snort alert and control panel
remote trip status features are event-based. For each, when the
sensor detects the presence of an event the sensor provides
a message indicating the event occurred. In a data log, a con-
tinuously sampled sensor measurement takes a value and holds
that value across multiple samples until the state changes.

Fig. 3. Relay trip time versus fault location for relays R1 and R2.

Conversely, in the data log, event-based features are asserted
for a single sample for each measured event.

When up sampling, continuously sampled sensor measure-
ments are mapped to the nearest sample period after the
measurement. All samples without a value take the value of
nearest preceding sample. Event-based sensor measurements
are also mapped to the nearest sample period after the mea-
surement. All samples without a value take the nonasserted
value. For this paper, the current magnitude measurements
were measured at 120 samples/s which is the highest sampling
rate of all features. Relay status, Snort alerts, and control panel
log features were up sampled according to the aforementioned
procedure.

An MED represents one instance of a scenario. The TSs
of rows in the MED are normalized by subtracting the time
of the first row from all other rows. This causes all MEDs to
start from time 0.

B. Creating and Grouping Paths

A path is a list of observed system states arranged in
temporal order. Paths are extracted by down-sampling the
MED while preserving all state transitions. A state change
is a change on any sensor value between two MED samples.
The MED is parsed to identify all periods of consistent state.
Consistent state periods are down-sampled using a user defined
sample period. For this paper, the sample period was 0.5 s.
Each unique state is assigned a state identifier (Sid) and all
known states are stored in a state data base.

A path is extracted for each MED. A single scenario will
have many unique paths due to the dynamic nature of power
systems, variations in the order of states within a path, and
due to variations in event timing. Using the raw paths derived
from the extraction process for classification results in poor
classification accuracy. The common path mining algorithm is
used to shrink the larger group of paths into a representative
set of common paths which represent normal variation and
serve as a set of signatures for each scenario.

Grouping is an optional step which preprocesses input
data to separate large classes into smaller sub-classes.
Grouping can lead to more accurate classification when the
sub-classes are sufficiently different from one another.

Fig. 3 clearly shows zones 1 and 2 trip boundaries for both
relays. Additionally, Fig. 3 shows that the relay trip times
vary with fault location especially in the fault location region
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from 24% to 79% of the transmission line. The relay trip time
for Fig. 3 was calculated from the MED as the time relay
status is transitions from closed to open minus the initial time
the line current equals is high. System behavior also varies as
the system load changes.

Ideally, instances of SLG faults from a two zone distance
protection scheme can be separated into three groups accord-
ing to the area of the line in which the fault occurs. Group 1
includes faults from the length of the line which is protected
by relay R1’s zone 1 and relay R2’s zone 2. From Fig. 2,
group 1 includes faults which occur between 10% and 23% of
the line. For group 1 faults, relay R1 should trip instantly and
R2 should trip after 0.4 s. Group 2 includes faults protected by
relay R1’s and R2’s zone 1. Both relays should trip instantly
for group 2 faults. From Fig. 3, group 2 faults occur between
24% and 79% of the line. Group 3 includes faults protected by
relay R1’s zone 2 and relay R2’s zone 1. Relay R1 should trip
after 20 cycles and R2 should trip instantly for group 3 faults.
From Fig. 3, group 3 faults occur between 80% and 90% of
the line.

Observed trip times in group 2 tend to increase as the
fault approached the zones 1 and 2 boundary points. To com-
pensate for this observed behavior the SLG fault paths were
grouped by fault location per the following groups: 10%–23%,
24%–29%, 30%–35%, 36%–40%, 41%–60%, 61%–65%,
66%–70%, 71%–80%, and 81%–90%. Additionally, it was
observed that trip times partially correlated to the system load.
As a result, the SLG fault paths were grouped by fault loca-
tion and load. Four load ranges were used: 200–249, 250–399,
300–349, and 350–399 MW. This grouping subdivided the
SLG fault paths into 9 ∗ 4 = 36 sub-groups.

C. Common Path Mining

For this experiment the set G consists of 5000 raw paths
from 5000 instances of the 25 scenarios. The common path
mining algorithm produced 477 common paths across all sce-
narios. The minimum and maximum number of common paths
for a single scenario were 4 and 53, respectively. The 15 SLG
fault scenarios had 421 common paths spread among them.
The remaining ten scenarios had 56 common paths. The large
number of common paths for the SLG faults is due to the large
variation in relay trip times as fault location and system load
varies.

Common paths can be mapped into 2-D coordinates with
the y-axis indicating the state identification code (state ID) and
the x-axis indicating normalized TSs. An edge between two
vertices represents the temporal transition between two states.
Each vertex is marked with state information. Note that, only
necessary features are displayed to save space. Fig. 4 shows
common paths for two scenarios, a fault in the 36%–40% fault
location of line L1 and a fault replay attack on line L1. The
fault and fault replay paths both start at the system normal
state. For real faults, the PMU will measure high current when
a fault is present while for the fault replay attack, the attacker
injects high current measurements to the PDC. This makes
the second state of both common paths high current detected
at relay R1, i.e., IR1 = high. However, these paths differ

Fig. 4. 2-D coordinates documenting fault versus fault replay attack common
paths.

Fig. 5. 2-D coordinates documenting line maintenance versus command
injection attack common paths.

immediately because for the fault replay, the attacker has to
inject relay trip commands to relay R1 and R2 at the same
time. As such, the second state for the fault replay attack
has the trip commands to R1 and R2 detected by Snort,
i.e., SNT = (R1, R2) in Fig. 4.

Fig. 5 shows common paths for line maintenance and
command injection attack scenarios. The primary differ-
ence between the two scenarios is the command to open
relays R1 and R2 originates from the control panel computer
for the line maintenance scenario. This causes the control
panel log to include a trip command message. The common
path for the line maintenance scenario includes a state noting
the detection of control panel log events [i.e., CP = (R1, R2)]
and states showing Snort detecting remote trip command net-
work packets [i.e., SNT = (R1, R2)]. The common path for
command injection includes the Snort alert but excludes the
control panel log state.

Figs. 4 and 5 demonstrate that common paths contain the
critical states for different scenarios. The primary contribution
of the common path mining algorithm is the ability to automat-
ically create unique paths for each scenario type from data sets
which measure behavior associated with the scenarios.

VI. EVALUATION

Three approaches were used to evaluate the IDS. First, the
IDS was used to classify 5000 instances of scenarios from the
test data set described in Section IV of this paper. Confusion
matrices are provided to show IDS accuracy. A detailed review
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TABLE III
CONFUSION MATRIX FOR SCENARIOS Q1–Q13

TABLE IV
CONFUSION MATRIX FOR SCENARIOS Q14–Q25

of the algorithms ability to classify SLG faults by fault loca-
tion is also provided. Second, training and testing was repeated
with sets of four scenarios missing from the data set. This test
was used to demonstrate the IDSs ability to detect zero-day
attacks and unknown scenarios. Finally, IDS cost and perfor-
mance was measured by measuring the amount of processing
time and memory required during training and evaluation.

Tables III and IV provide confusion matrices for the
25 tested scenarios. The confusion matrices were separated
into two tables to allow them to fit in the column width of this
paper. The row labeled “Oth” represents scenarios Q14–Q25 in
Table III and Q1–Q13 in Table IV. The row labeled “Unk”
provides the number of instances which were unclassified due
to no matching common path. Finally, the row labeled “Unc”
provides the number of instances with uncertain classification
due to matching more than one common path from more than
one scenario.

In total, 90.4% of the tested instances were correctly clas-
sified and 2.7% of the instances were misclassified. 4.7% of
instances were classified as unknown and 2.2% were classified
as uncertain. All of the cases of uncertain classification were
related to SLG fault instances which matched a common path
for more than one fault scenario.

The IDS can generate false positives, especially, in the
case of scenarios which are designed to mimic a nonattack

scenario or event. For this paper, false positives rates were
calculated for all nonattack scenarios misclassified as attacks.
Scenarios Q1 and Q2, both SLG faults, had 2.1% and 1.6%
false positive rates, respectively. In both cases, the major-
ity of false positives were classified as fault replay attacks.
Replay attacks are designed to mimic SLG attacks. One out
of eleven false positives was classified as a relay disable
attack. Scenarios Q5 and Q6, both line maintenance events,
had 0.8% and 0.9% false positive rates, respectively, which
was one false positive for Q5 and Q6, respectively. For the
Q5 scenario, the false positive was a command injection attack
to open both relays at the end of the transmission line. For
the Q6 scenario, the false positive was a fault replay attack. In
both cases, the sequence of states in the common paths for the
actual scenario and the misclassified scenario have overlapping
sub-sequences of states. This overlap combined with variabil-
ity in observed data due to power system and measurement
system dynamics can lead to false positives.

Additional evaluation was performed for classifications of
the sub-groups of scenario Q1, a SLG fault on line L1. The
paths for Q1 were grouped into sub-groups by fault location
and circuit load as previously mentioned. The SLG fault with
grouping accuracy rate was 84.6% while 11.35% of the paths
were misclassified. Further analysis showed that a majority of
misclassification occurred when SLG fault groups were clas-
sified as members of a neighboring or nearby fault group. The
grouping experiment demonstrates the common path mining
algorithm’s strength of finding unique paths for even similar
scenarios.

Tenfold cross-validation was used to evaluate the detection
accuracy of zero-day attack scenarios as shown in Table V. For
each round of testing four scenarios were randomly selected
to be excluded from training but present in the testing data set.
The average detection accuracy for zero-day attack scenarios
was 73.43%. However, there were cases where the detection
rate for zero-day attack was low. For example, analysis of
round three results showed that scenario Q6 (command injec-
tion to trip relays R1 and R2) was always misclassified as
scenario Q3 (fault replay attack on line L1). This occurs
because the expected common paths for Q6 and Q3 are sim-
ilar. Therefore, when Q6 is unavailable in training, instances
of Q6 are classified as instances of Q3 which leads to mis-
classification. In this case, both Q6 and Q3 are attacks and
the zero-day attack is classified as another attack which is
better than classifying as a nonattack. To improve the classi-
fication accuracy between similar scenarios additional sensors
are needed to illuminate events which are different between
the two scenarios. Of course, in the zero-day case it is difficult
to predict which additional sensors may be required.

Training and classification processing time and memory
usage were measured using an Ubuntu Linux Virtual Machine
with 3.5 GHZ CPU and 2 GB memory. Training required
0.33 s per scenario instance and 34 MB memory. Classification
of test cases required 0.85 s per scenario instance to complete
and 26.2 MB of memory.

Multiple batch processing-based data mining algorithms
were used to classify power system faults and cyber-attacks
in [22] using the same data used for the work presented
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TABLE V
DETECTION ACCURACY FOR FOUR RANDOM ZERO-DAY

ATTACKS 10× VALIDATION

in this paper. The results in [22] were for classification with
binary classes (attack and nonattack), three classes (attacks,
nonattacks, and normal), and multiclass (all classes main-
tained). The common paths mining-based IDS outperformed
all traditional methods in [22] for overall accuracy in the
multiclass case. A combination of the JRipper_and Adaboost
algorithms produced accuracy approaching 90% which is sim-
ilar to the accuracy of the common paths mining-based IDS.
All other test approaches had significantly lower accuracy than
the IDS presented in this paper. The binary and three-class
methods in [22] lead to improved accuracy at the expense of
classification precision. The common paths mining-based IDS
provides accurate and precise classification of each scenario
type. Precise classification by scenario type is needed to speed
understanding of attacks and to enable automated or manual
response. Binary and three-class IDS need post processing to
provide additional detail before response. The primary advan-
tage of common paths mining-based IDS over a traditional
batch processing IDS is the ability to process data as a stream
rather than collecting batches of data for off line analysis.
Stream processing minimizes the amount of memory required
to train and classify and therefore is better suited for IDS at
the scale of a power system.

VII. CONCLUSION

The common paths mining-based IDS provides stateful
monitoring of an electric transmission distance protection
system by leveraging a fusion of synchrophasor data and
information from relay, network security logs, and EMS logs.

The IDS is trained using a common path mining algo-
rithm. Common paths are hybrid signatures and specifications
which described patterns of system behavior associated with
power system events. The algorithm provides a time-domain
data analysis approach to overcome transients present in
the measurements. This is done by mining shared states
out of a group of observed paths. Common paths are used
to describe system responses to power system disturbances,
control actions, and cyber-attacks.

The IDS matches monitored system state traversal to com-
mon paths to make classification decisions. Classification
is specific to each trained scenario rather than simply an
indication of normal or abnormal activity.

In this paper, the IDS was trained an evaluated for
a three-bus two-line transmission system which implements
a two zone distance protection scheme. Twenty five scenar-
ios consisting of stocktickerSLG faults, control actions, and
cyber-attacks were implemented on a hardware-in-the-loop test
bed. Scenarios were run in a loop 10 000 times with random-
ized system parameters to create a dataset for IDS training
and evaluation. The IDS correctly classified 90.4% of tested
scenario instances. Evaluation also included a tenfold cross-
validation to evaluate the detection accuracy of zero-day attack
scenarios. The average detection accuracy for zero-day attack
scenarios was 73.43%. The common paths mining-based IDS
outperforms traditional machine learning algorithms and is
better suited for the high volume of data present in power
systems.

Currently, the common paths mining-based IDS builds com-
mon paths from captured data logs. Capturing such data logs
for real systems is difficult. As such, future work is required to
limit the amount the number of captured scenarios instances
required to train the algorithm. The IDS was tested by offline
review of test data sets. Future work is needed to update the
IDS to perform real time classification from live system inputs
and to incorporate the classifier with an intelligent adaptive
control framework [23] to achieve increased automation in of
power systems.
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