Estimating discretionary accruals using a grouping genetic algorithm
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A number of different models have been suggested for detecting earnings
management but the linear regression-based model presented by Jones
(1991) is the most frequently used. The underlying assumption with the
Jones model is that earnings are managed through accounting accruals.
Typically, the companies for which earnings management is studied are
grouped based on their industries. It is thus assumed that the accrual
generating process for companies within a specific industry is similar.
However ,some studies have recently shown that this assumption does not
necessarily hold. An alternative approach which returns a grouping which
is, if not optimal, at least very close to optimal is the use of genetic
algorithms. The purpose of this study is to assess the performance of the
cross-sectional Jones accrual model when the data set firms are grouped
using a grouping genetic algorithm. The results provide strong evidence
that the grouping genetic algorithm method outperforms the various
alternative grouping methods.
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1. Introduction Ao )b0

The occurrence of earnings management has been a widely studiedsubject for the
past 30 years. One of the major challenges whenexamining possible earnings
management is that the magnitude ofit is difficult to assess. A number of different
models have beensuggested for detecting earnings management but the linear
regression-based model presented by Jones (1991) is the most frequentlyused. The
underlying assumption with the Jones model is thatearnings are managed through
accountingaccruals. Typically, thecompanies for which earnings management is
studied are groupedbased on their industries. It is thus assumed that the accrual
generatingprocess for companies within a specific industry is similar.Recently,
however, some studies have shown that this assumptiondoes not necessarily hold.
Dopuch, Mashruwala, Seethamraju, andZach (2012), for example, showed that a
violation of the homogenousaccrual generating process within an industry
causesmeasurement errors. In another study Ecker, Francis, Olsson, andSchipper
(2011)showed that the performance of the Jones modelis improved when lagged
totalassets are used as a grouping variableinstead of the industry membership.
Eventhough alternativemethods have been used for grouping companies when
usingtheJones-model, none of them has clearly outperformed thegroupingbased
onindustry membership.
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An exhaustive search for the best possible grouping is in mostcases impossible
considering the large number of possible combinationseven with moderate size data
sets. An alternative approachthat returns a grouping which is, if not optimal, at least
very closeto optimal is the use of genetic algorithms. Genetic algorithmshave proven
efficient in solving difficult problems such as the travellingsalesman and the equal piles
problems.
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Genetic algorithms have been used in a number of accountingapplications.

Back, Laitinen, and Sere (1996) used a genetic algorithmto determine the optimal
predictorsfor a neural networkbasedbankruptcy prediction model. A similar study was
carriedout by Shin and Lee (2002) when they used a genetic algorithm togenerate
bankruptcyprediction rules. Hoogs, Kiehl, Lacomb, andSenturk (2007) presented a
geneticalgorithm approach for detectingfinancial statement fraud. Their model
successfullyclassified63% of the companies that had been accused by the Securities
andExchangeCommission (SEC) for improperly recognizing revenue.
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The purpose of this study is to assess the performance of thecross-
sectional Jones accrual model when the data set firms aregrouped using a
grouping genetic algorithm. The performance ofthe grouping genetic
algorithm approach is compared with theperformance of a number of other
grouping techniques.
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The remainder of this study is organized as follows. The basicoperating
principle of the linear regression-based accrual modelsis covered in Section
2. In Section 3 an overview of both classicand grouping genetic algorithms
is given. The research design ispresented in Section 4 and the results from
the empirical study are presented in Section 5. Section 6 concludes the
study.
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2. Discretionary accrual estimation models
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widest acceptance among researchers is the linear regression-based model
presented by Jones (1991). The general assumption with the Jones-model
is that earnings are managed through accounting accruals. The accruals
are defined as the difference between net earnings before extraordinary
items and cash flows from operations.The purpose of the Jones-model is to
split the total accruals of a company into non-discretionary (expected) and
discretionary (unexpected) accruals.
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The non-discretionary accruals are accruals that the company management
has no or little control over ,whereas the discretionary accruals are a proxy
for earnings management .In the model the reciprocal of total assets,
change in revenues(DREV) and gross property, plant and equipment (PPE)
are regressed on total accruals (TACC). The variable for change in
revenues controls for current accruals such as receivables, payables and
inventory whereas the variable for property, plant and equipment mainly
controls for depreciation and amortization accruals. In the linear
regression-based Jones-model the regression error term (e) equals the
discretionary accruals
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In the original Jones-model the regression was run separately foreach
company using a time-series of at least 10 observations. Thetime-series
approach has, however, several drawbacks. First, therequirement of at
least 10 years of financial statement data mightlead to both a survivorship
bias and a selection bias (Jeter &Shivakumar, 1999). Second, the
assumption that the accrual generatingprocess of a company is stable over
longer periods of timedoes not necessarily hold (Dopuch et al., 2012). Due
to these drawbacksthe time-series approach has largely been replaced by
thecross-sectional approach first suggested by Dechow (1994).
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the cross-sectional approach it is assumed that companies withina specific
industry have a similar accrual generating process. Usually the industry is
defined at a two-digit level SIC (e.g. Bartov,Gul, &Tsui, 2000; Jeter
&Shivakumar, 1999). A number of recent studies have questioned whether
the assumption of similar accounting generating processes within the
industries is valid. Dopuch et al. (2012) showed that the assumption of a
homogenous accruals generating process does not apply for several
industries. Furthermore, they also showed that the violation of this
assumption caused some measurement error of discretionary accruals.
They do not, however, suggest any alternative method of grouping the
companies when using the Jones-model. Ecker et al. (2011) used a number
of different variables for grouping companies when using the Jones-model



and their findings showed that the best result was achieved when lagged
total assets were used.
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3. Genetic algorithms
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3.1. Operating principle
wildoc Jgol

Genetic algorithms are an optimization technique based onmodels of
natural selection and evolution. The fundamentalprinciples of the genetic
algorithm were first presented by Holland(1975). The starting point when
using genetic algorithms is apopulation consisting of a certain number of
chromosomes(individuals), where the chromosomes represent valid
solutionsto the problem. Once the population size has been determined,
the initial population is usually randomly generated. The size ofthe initial
population depends on the complexity of the problem.A genetic algorithm
with a smaller population is faster but at thesame time the risk of
premature convergence increases (Koljonen,Mannila, &Wanne, 2007).
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Once the initial population has been generated, the fitness of each
chromosome is evaluated. Based on thefitness values, parent
chromosomes are selected from the initialpopulation to form new
chromosomes to the next generationthrough a breeding process. The most
commonly used method forselecting the parent chromosomes is the
roulette wheel selection(Butun, Erfidan, &Urgun, 2006) in which a
proportion of the wheelis assigned to each chromosome based on their
fitness values. Thelarger the proportion of the wheel, the higher the
probability ofgetting selected. A central part of the breeding process is
thecross-over function.
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The parent chromosomes are combined usinga cross-over function to form
new chromosomes. A commonly used cross-over technique is the single-
point cross-over where a single cross-over point is selected in the
chromosome. The part beyondthe cross-over point is then swapped
between the two parentchromosomes. Once the next generation has been
formed, thenew chromosomes are subjected to random mutation. The
purposeof the mutation is to prevent the premature convergence of the
genetic algorithm. After the mutation process has been completed,the
fitness of the chromosomes in the new generation is assessedand the
selection and cross-over procedures start all over. The evolution process is
stopped when a satisfactory solution has beenreached or when some other
predetermined condition has beenmet. To prevent from losing the best
chromosomes during thecross-over and mutation operations, elitism can be
employed.Elitism means that the best or a few of the best chromosomes
aredirectly copied from the previous to the next generation. Elitismcan
improve the performance of the genetic algorithm but thereis also a risk
that it leads to premature convergence.
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3.2. Grouping genetic algorithms
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Classic genetic algorithms do generally not perform well ongrouping
problems. The main problems are a high redundancyamong the population
chromosomes and a context insensitivityof the cross-over function
(Falkenauer, 1996). To deal with theseshortcomings of the classic genetic
algorithm, Falkenauer (1992)suggested a modified genetic algorithm suited
for grouping problems.The general difference between the two types of
geneticalgorithms is that in classic genetic algorithms the focus is on
individualitems whereas in grouping genetic algorithms the focus is on
groups of ithems.
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In a grouping genetic algorithm the chromosome is divided intoa number
of groups which in turn contain a number of individualitems. The values of
the individual items as such are not important.Instead, it is the group
membership of the items that is of value. Inthe grouping genetic
algorithmsuggested by Falkenauer, the chromosomelength is variable. The
groupinggenetic algorithm can,however, also be used with fixed
lengthchromosomes when requiredby the nature of the problem (e.g. the
equal piles problem,Falkenauer, 1996).
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The cross-over function for the grouping genetic algorithm isillustrated
inFig. 1. First, two cross-point are selected randomlyin both chromosomes
involved in the cross-over function. To generatethe first new
chromosome,the genes between the crosspointsin the second old
chromosome areinjected after the firstcross-point in the first old
chromosome. At this point some items occur in two groups. The groups
coming from the first old chromosome and that have items also occurring
in the groups coming from the second old chromosome are deleted. After
removing these groups,some items might not be present in the remaining
groups.These items are allocated to new groups using various
methods.The missing items can, for example, form a new group or they
can be distributed over a certain number of new groups. Once the first new
chromosome has been created,a second new chromosome is formed using
the same two oldchromosomes but in a reverse order.
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As with the cross-over function, the mutation operator for grouping genetic

algorithms works on groups rather than items.
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Falkenauer (1996) describes three general strategies for mutation for the
grouping genetic algorithm: creating new groups, eliminating existing
groups or shuffling a small number of randomly selected items among the
groups. The exact implementation details depend on what type of a
problem is to be solved.
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4. Research methodology
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4.1. Research task
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The purpose of this study is to assess the performance of the cross-
sectional Jones accrual model when the data set companiesare grouped
using a grouping genetic algorithm. The result sobtained with the grouping
genetic algorithm approach are compared with results obtained with
various other grouping techniques,such as grouping the companies by their
two-digit SIC.The performance of the cross-sectional Jones model with the
different grouping techniques is measured both by the standard deviation
of the discretionary accruals as well as by the ability to detect simulated
earnings management of various levels.
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4.2. Data set description
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The data set comprises financial statement data for public UScompanies
with complete data for years 2009 and 2010 retrievedfrom Burea van
DijksOrbis database. In accordance with previousstudies, utilities (SIC
4900-4999) and financial companies (SIC6000-6999) are excluded from the
dataset. Furthermore, companieswith lagged total assets less than 1 million
USD, zero revenues for atleast one of the two years, absolute total accruals
equal to or abovelagged total assets or market capitalization equal to zero
are removed.
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To avoid the impact of possible outliers, the independentvariables in the
Jones-model (change in sales and property, plant& equipment) are
truncated at the 1st and 99th percentiles. Finally,all companies belonging
to two-digit SIC groups with less than 20companies are excluded. The
criteria above results in a data set comprising2590 companies in 30 two-



digit SIC groups. The final data setcontains 10 groups with 20 companies
with the same two-digit SICin each group (see Table 1). These 10 groups
are selected randomlyout of the available 30 two-digit SIC groups. If a
selected group hasmore than 20 companies, 20 companies are selected
randomly fromall companies with the same two-digit SIC. The following 10
two-digitSIC groups have been randomly selected.

Jao 5 Jsiiwe S jusio (Ulwgs Shhls oMl (Jlois! 15U 51 S8 gl> sl
guino oligS ..... A9 g9 ) > (Whiup=i g Wl,IS (subyldg Gwg )9 5> Huusi )jig>
Yo 5l 55 oS L SIC 909,855 U Sd 09,8 U aleio S wS i aod plilw
03l> acgo=xoSy ;1899 zulu Sld lieo.Nguiuoe Vi> agllas JI> 5> S,

Sl 031> acgozo. il (o (0995 1S T L S 09,5 S 502590 Jolila
Ailuo 09,5 48 5> SIC (509,95 S Ulod L S, Yo L og,S Vo Jolo sulps
59>90 SIC 509,95 AS Y+ U ould 09,5 5l 2,5 3l (sdslai job @ 09,5 1+
S Yo oS0 5 ) S, Yol G 0aui wlzisl 09,8 SO S s ol
303 Dgwino Wil SIC (swd 9> aS Uled L (d S i aod I s9slai job @
ool 000 Ozl (09slai job U (s0d); 95 AS 1+ L ould 09,8

4.3. Grouping genetic algorithm discretionary accrual model
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The discretionary accrual model used in this study is a linearregression-
based cross-sectional version of the Jones-model (e.g.Dechow, 1994). In
the model the reciprocal of total assets, changein revenues (DREV) and
gross property, plant and equipment (PPE)are regressed on total accruals
(TACC). Total accruals are calculatedby subtracting operating cash flows
from net earnings beforeextraordinary items. All variables in the regression
equation aredeflated by lagged total assets (TAt_1).
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The grouping genetic algorithm is used for dividing the data setcompanies
into 10 groups with 20 companies in each. For each ofthe 10 groups the
Jones-model regression model is run separately.The residuals from the
regressions (e) equal the discretionaryaccruals and the fitness of a specific
grouping is assessed basedon the standard deviation of the discretionary
accruals for all 10groups combined. The lower the standard deviation of
the discretionaryaccruals, the better the grouping of the companies.
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The parameters for the genetic algorithm are presented inTable 2. Thereis
no exact method for determining the parametersand thus someheuristics
are required. Both the number of groupsand the group size(humber of
items per group) are fixed and donot change during theevolution process.
The population comprises100 chromosomes which areinitially generated at
random.The maximum number of generations is setto 25,000 but
theevolution process is stopped if the best fitness valuereaches zero.In
order to prevent the loss of the chromosomes with thebest fitness,elitism is
employed. In this study, the chromosomes withthel0 best fitness values
are copied directly to the next generation.To avoidgetting stuck in local
minima and to prevent earlyconvergence, a mutationmechanism is used.
The probability thata chromosome is mutated is set to5%. The
chromosomes selectedby elitism are excluded from possiblemutation.
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When generating a new generation with the genetic algorithm,the
chromosomes with the 10 best fithess values are first copiedfrom the old
generation. The remaining chromosomes are generatedfrom chromosomes
in the old generation using the roulettewheel selection and a cross-over
mechanism so that two chromosomesfrom the old generation results in two
chromosomes in thenew population. The cross-points in both chromosomes
areselected randomly.Once the new generation is completed.the
chromosomes are subjected to possible mutation. If a chromosomeis
mutated, two genes are randomly selected from the chromosomeand the
items in these genes are randomly shuffled
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4.4. Strategy of analysis
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The performance of the Jones-model when grouping the companiesusing a
grouping genetic algorithm is compared with theperformance of a number
of alternative grouping methods. First,the performance is assessed when
the companies are randomlygrouped and when one regression is run for all
200 companiespooled. Second, the companies are grouped based on their
two-digitSIC. This is a common method of grouping, used frequentlyin
previous studies. Last, six other grouping variables suggestedby Ecker et
al. (2011) are used. These six variables are currentand lagged total assets,
current and lagged revenues, market capitalizationand company age in
years. When forming the groupsusing these six variables, the companies
are first sorted accordingto the value of a variable. The first group then
consists of companies1-20, the second group of companies 2140 and so
forth.
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The performance of the different grouping methods is first assessed by
comparing the standard deviation of the discretionaryaccruals. A lower
standard deviation of the discretionary accruals equals a better
performance. Furthermore, the mean and median values of the
discretionary accruals are examined. The closer to zero these values are,
the better the performance of a method. To assess the earnings



management detection ability of the different grouping methods, various
levels of simulated earnings managementare inserted to the data set. Two
types of earnings management are simulated: expense manipulation and
revenue/baddebt-manipulation. In expense manipulation a certain level of
earnings management is added to total accruals, whereas in revenue/bad-
debt manipulation earnings management is added both to the total
accruals and to the change in revenues. The levels of the simulated
earnings management ranges between _5% and 5% of lagged total assets
with 1% increments.
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To test whether a grouping method is able to detect a certain level of
earnings management,simulated earnings management is added to 20
companies which are randomly selected from the total data set of 200
companies.The discretionary accruals for the companies with the simulated
earnings management are calculated using the regression coefficients for
the group to which they belong. Furthermore, for the20 companies that
have simulated earnings management a partitioning variable (PART) is set
to 1. For the remaining 180 companies the partitioning variable is set to 0.
Next, the partitioning variable is regressed on the discretionary accruals
(DACC).The ability of the Jones-model to detect certain level of simulated
earnings management when using a specific grouping method is
determined based on the regression coefficient of the partitioning variable
(b1). If the b1 coefficient is significant at a 5% level, the simulated
earnings management is considered detected. The earnings management



simulation process is repeated 500 times. The performance of a specific
grouping method is assessed based on the number of significant
coefficients for the partitioning variable at different levels of simulated
earnings management.
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5. Results and discussion

5.1. Descriptive statistics

The total data set consists of 200 public US companies from 10different
industries. The descriptive statistics presented in Table 3show that there
are considerable differences between the data set companies.
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The largest company has total assets of more than 39billion USD, whereas
the smallest company shows total assets ofjust above 1 million USD.



Similarly, the revenues range between more than 25 billion USD and about
15000 USD. The average total accruals are _0.069. This is expected as
accruals typically are negative due to depreciation. The age of the
companies ranges betweenl and 155 years, with an average age of 35
years.
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The evolution process is illustrated in Fig. 2. The dotted line shows the
average standard deviation of the discretionary accruals and the solid line
shows the lowest standard deviation of the discretionary accruals for the
population in each generation. At around the 6000nd generation the
population starts to converge and from the 10,000nd generation and
onwards only minor improvements to the lowest standard deviation of the
discretionaryaccruals occur. When the evolution process is stopped at
the25,000nd generation the lowest value of the standard deviation of the
discretionary accruals is 0.060. The evolution process was also run using
various parameter values for population size, elitism and mutation
probability. The evolution processes with the alternative parameters did,
however, not improve the results.
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5.2. Assessing the performance of the model
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In this study the performance of the cross-sectional Jonesmodelis assessed
with the companies grouped using a groupinggenetic algorithm. The
performance of the genetic algorithmgrouping method is compared with
the performance of nine othergrouping methods. The first test of
performance is based on thestandard deviation of the discretionary
accruals. The results in Table4 clearly show that the genetic algorithm
grouping method hasthe lowest standard deviation at 0.060. The second
best groupingmethod is the two-digit SIC grouping with a standard
deviationof 0.115 whereas the worst performing grouping method is
thepooled regression with a standard deviation of 0.146. The
remainingseven grouping methods show similar standard deviationsranging
between 0.130 and 0.13 .
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None of the 10 grouping methods show discretionary accrualssignificantly
different from zero. The grouping method with themean discretionary
accruals closest to zero is the genetic algorithmgrouping method, whereas
the grouping method based on the marketcapitalization shows the median
discretionary accruals closestto zero. Finally, the genetic algorithm
grouping method clearlyshows the smallest values for both minimum and
maximum discretionaryaccruals. Overall, these results show that the
geneticalgorithm grouping method outperforms the other nine
groupingmethods.
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In the second test of performance, known levels of earningsmanagement is
added to 20 companies which are randomly selectedfrom the total data set
of 200 companies. The levels of thesimulated earnings management
ranges between _5% and 5% oflagged total assets with 1% increments.
For each level of simulatedearnings management, 500 data sets with 20
randomly selectedcompanies are created and evaluated. The higher the
number ofdata sets where earnings management is detected, the better



theperformance. The results from the simulated expense manipulationare
presented in Table 5.
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With no simulated earnings management,a well specified model is not
expected to detect any earnings management in a randomly selected data
set. When no simulatedearnings management has been added to the data
set, the detectionrate varies between 4.4% and 7.8%. As expected, the
higherthe level of the simulated earnings management, the higher
thedetection rate is for all grouping methods. At a level of £1% the
geneticalgorithm grouping method shows the highest detectionrates but
the difference to the other grouping methods is not distinct.However,
already at a level of £2% the difference between the genetic algorithm
grouping method and the other groupingmethods becomes much clearer.
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With simulated earnings managementequaling £2% of lagged total assets,
the detection rate for thegenetic algorithm grouping method is 29.0%
whereas the groupingmethod with the second best detection rate is much



lower at12.0%. At the highest level of simulated earnings management,the
detection rate for the genetic algorithm grouping method isover 90%. At
this level of simulated earnings management thedetection rate for the
other grouping methods ranges between29.4% and 44.0%.
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To assess the overall detection rate for the grouping methods,an
effectiveness score is calculated by first dividing the detectionrate for the
grouping method at a specific level of earnings managementwith the
maximum detection rate at that level of earningsmanagement. This results
in 10 effectiveness scores for eachgrouping method. The overall
effectiveness score is then calculatedby averaging these 10 effectiveness
scores. As the genetic algorithmgrouping method has the highest detection
rate at all levelsof simulated earnings management, the effectiveness score
for thismethod equals 100%. The method with the second highest
effectivenessscore is the two-digit SIC grouping method whereas
therandom grouping method shows the lowest effectiveness score.
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The detection rates for the revenue/bad-debt manipulation arepresented in
Table 6. In general, the detection rates for the simulatedrevenue/bad-debt
manipulation are similar to the detectionrates for the simulated expense
manipulation. It is mainly atthe highest level of the simulated earnings
management that thedetection rates are somewhat higher for the
simulated expensemanipulation. As with the expense manipulation, the
genetic algorithmgrouping method clearly shows the highest detection
ratesfor revenue/bad-debt manipulation. The second best groupingmethod
is again the two-digit SIC grouping and the lowestperforming grouping
method is the random grouping.
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5.3. Discussion

The results in this study provide strong evidence that thecross-
sectionalJones-model with the companies grouped using agrouping
geneticalgorithm outperforms the cross-sectional Jonesmodelwith the
companies grouped with alternative methods. First,the standard deviation
of the discretionary accruals using the geneticalgorithm grouping method is
less than half of the standarddeviation obtained with the other grouping
methods. Second, thegenetic algorithm method shows significantly higher
earningsmanagement detection rates on various levels of
simulatedexpenseand revenue/bad-debt manipulation compared with the
othergrouping methods. At a 5% level of simulated earnings
managementthegenetic algorithm method has a detection rate above
90%,whereas therest of the methods have detection rates around 30%.
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6. Conclusion
culo

The purpose of this study was to assess the performance of the cross-
sectional Jones accrual model when the data set firms are grouped using a
grouping genetic algorithm. The results providestrong evidence that the
grouping genetic algorithm method outperformsthe various
alternativegrouping methods. This is especiallyclear when evaluating the
earningsmanagement detectionpower at different levels of simulated
earningsmanagement. Theresults also show that alternative grouping
methods, such as thefrequently used two-digit SIC grouping, perform only
marginallybetter compared with a random grouping approach. This
studycould be extended by including various modifications of theJones-
model as some studies have shown that there is a differencein
performancebetween different versions of the Jones-model. Furthermore,a
wider range of settings for the genetic algorithm could be assessed.
Especially, lifting the constraint of a fixed number of groups could improve
the performance of the genetic groupingalgorithm approach.
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